

ABOUT THE AUTHORS

Ted Jordan (MS, CompTIA Linux+, CompTIA Security+, CompTIA

Cloud+, CISSP, CSSLP) has over 25 years of UNIX, IRIX, Solaris, and

Linux engineering experience. He studied coding and UNIX as a graduate

student of the University of California, Berkeley and Kettering University.

During Mr. Jordan’s engineering career, he coded in C/UNIX for General

Motors, Silicon Graphics, Fakespace CAVE Virtual Reality, and Sun

Microsystems. He is the founder and president of successful technical

ventures, Funutation, Inc., and JordanTeam LLC, both providing Linux

coding and education. He has taken and passed all CompTIA Linux+ exams

since 2001 and has successfully trained hundreds of others to attain their

Linux+ certifications. Follow him on Twitter and YouTube

@JordanTeamLearn.

Sandor Strohmayer is a trainer and curriculum developer who has been

teaching and writing Linux and UNIX training material for more than 20

years. Mr. Strohmayer began as a hardware and operating system instructor

for Sun Microsystems. Since then he has developed and taught UNIX,

Linux, and other training programs for schools, corporations, and the

military, using study guides and blended learning techniques supplemented

with individually paced learning via a learning management system. Mr.

Strohmayer also offers study, Linux, and other IT hints on LinkedIn

(www.linkedin.com/pub/sandor-strohmayer/4/702/765).

http://www.linkedin.com/pub/sandor-strohmayer/4/702/765

About the Technical and Developmental Editor

Kenneth “Ken” Hess is a practicing senior system administrator and a

technology author, blogger, columnist, editor, and podcaster. Ken has

written hundreds of technology articles on topics that cover Linux, open

source software, Windows, Mac, mobile devices, databases, and

cryptocurrencies. He also reviews technology products and is an avid

photographer and filmmaker.

Copyright © 2023 by McGraw Hill. All rights reserved. Except as

permitted under the Copyright Act of 1976, no part of this publication may

be reproduced or distributed in any form or by any means, or stored in a

database or retrieval system, without the prior written permission of

publisher, with the exception that the program listings may be entered,

stored, and executed in a computer system, but they may not be reproduced

for publication.

ISBN: 978-1-26-480277-7

MHID: 1-26-480277-3

The material in this eBook also appears in the print version of this title:

ISBN: 978-1-26-479896-4, MHID: 1-26-479896-2.

eBook conversion by codeMantra

Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a

trademark symbol after every occurrence of a trademarked name, we use

names in an editorial fashion only, and to the benefit of the trademark

owner, with no intention of infringement of the trademark. Where such

designations appear in this book, they have been printed with initial caps.

McGraw Hill eBooks are available at special quantity discounts to use as

premiums and sales promotions or for use in corporate training programs.

To contact a representative, please visit the Contact Us page at

www.mhprofessional.com.

Information has been obtained by McGraw Hill from sources believed to be

reliable. However, because of the possibility of human or mechanical error

by our sources, McGraw Hill, or others, McGraw Hill does not guarantee

the accuracy, adequacy, or completeness of any information and is not

responsible for any errors or omissions or the results obtained from the use

of such information.

TERMS OF USE

This is a copyrighted work and McGraw Hill (“McGraw Hill”) and its

licensors reserve all rights in and to the work. Use of this work is subject to

these terms. Except as permitted under the Copyright Act of 1976 and the

right to store and retrieve one copy of the work, you may not decompile,

disassemble, reverse engineer, reproduce, modify, create derivative works

based upon, transmit, distribute, disseminate, sell, publish or sublicense the

work or any part of it without McGraw Hill’s prior consent. You may use

the work for your own noncommercial and personal use; any other use of

the work is strictly prohibited. Your right to use the work may be terminated

if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW HILL AND ITS

LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO

http://www.mhprofessional.com/

THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR

RESULTS TO BE OBTAINED FROM USING THE WORK,

INCLUDING ANY INFORMATION THAT CAN BE ACCESSED

THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND

EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

McGraw Hill and its licensors do not warrant or guarantee that the

functions contained in the work will meet your requirements or that its

operation will be uninterrupted or error free. Neither McGraw Hill nor its

licensors shall be liable to you or anyone else for any inaccuracy, error or

omission, regardless of cause, in the work or for any damages resulting

therefrom. McGraw Hill has no responsibility for the content of any

information accessed through the work. Under no circumstances shall

McGraw Hill and/or its licensors be liable for any indirect, incidental,

special, punitive, consequential or similar damages that result from the use

of or inability to use the work, even if any of them has been advised of the

possibility of such damages. This limitation of liability shall apply to any

claim or cause whatsoever whether such claim or cause arises in contract,

tort or otherwise.

This book is dedicated to my parents, Gwendolyn and Theodore Jordan,

who helped me find my passion for technology and teaching others “how to

fish.”

—Ted Jordan

CONTENTS AT A GLANCE

 An Introduction to Linux and a Pre-Assessment Exam

 Using the vi Text Editor

 Working with the Linux Shell

 Managing Linux Users and Groups

 Managing Linux Files and Directories

 Managing Ownership and Permissions

 Managing Storage

 Configuring Volume Management

 Managing Linux Processes

 Managing Linux Applications

 Managing the Linux Boot Process

 Managing Hardware Under Linux

 Writing Shell Scripts

 Managing Linux Network Settings

 Understanding Network Security

 Securing Linux

 Applying DevOps: Automation and Orchestration

 Understanding Virtualization and the Cloud

 Troubleshooting and Diagnostics

 Installing and Configuring Linux

 Objective Map

 About the Online Content

Index

CONTENTS

Acknowledgments

Introduction

 An Introduction to Linux and a Pre-Assessment Exam

Brief History of Linux

atch Processing

MULTICS

NIX

inux

inux Operating System Structure

ernel

perating System Software

pplication Software

inux Distributions

istribution Differences

inux Derivatives

ommon Linux Implementations

inux on the Desktop

inux on the Server

Mobile Linux

inux and Virtualization

inux and Cloud Computing

mbedded Linux

hapter Review

re-Assessment Test

uestions

uick Answer Key

n-Depth Answer Explanations

nalyzing Your Results

 Using the vi Text Editor

he Role and Function of the vi Text Editor

diting Text Files in vi

pening Files in vi

he vi Modes

Working in Normal Mode

Working in Command-Line Mode

xercise 2-1: Using the vi Editor

diting Text Files in nano

ommand Keys

onfiguration Files

hapter Review

uestions

nswers

 Working with the Linux Shell

What Is a Shell?

onfiguring the Shell

he Life of a Process

Managing Variables

onfiguring Aliases

etting Up the Local Environment

ocale Settings

haracter Encoding

n ASCII Primer

Unicode Primer

etting Time

he date Command

he /usr/share/zoneinfo/ and /etc/localtime Files

he hwclock Command

he timedatectl Command

ash Configuration Files

ogin Script Order

he source Command

xercise 3-1: Working with Variables, Parameters, and Aliases

edirection

le Descriptors

edirect stdin with <

edirect stdout with > and >>

edirect stderr with 2>

ombining stdout and stderr

end Data to a Command Using a Pipe

xercise 3-2: Redirection Hands-on Project

hapter Review

uestions

nswers

 Managing Linux Users and Groups

nderstanding Linux Users and Groups

inux User Accounts

isplaying User and Group IDs

reating and Managing User Accounts from the Command Line

rovisioning New Users with useradd

xercise 4-1: Managing User Accounts from the Command Line

rovisioning New Workgroups with groupadd

xercise 4-2: Managing Groups from the Command Line

hapter Review

uestions

nswers

 Managing Linux Files and Directories

nderstanding the Filesystem Hierarchy Standard

avigating the Linux Filesystem

iewing Directory Contents with ls

xercise 5-1: Navigating the Filesystem

Managing Linux Files

les, Filenames, and Inodes

reating and Validating Files with touch and stat

oft and Hard Links

reating New Directories with mkdir

etermining the File Type

iewing File Contents

eleting Files

opying and Moving Files

xercise 5-2: Managing Files and Directories

nding Files in the Linux Filesystem

sing find to Search for Files

sing xargs to Run Commands from Standard Input

sing locate to Find Files

nderstanding Commands and Precedence

reating Aliases

reating and Using Functions

sing Builtin Commands

sing External Commands

xercise 5-3: Finding Files

nding Content Within Files

sing grep to Search Within Files

sing egrep to Search Within Files

xercise 5-4: Using grep

hapter Review

uestions

nswers

 Managing Ownership and Permissions

Managing File Ownership

iewing Default File Permissions and Ownership

Managing Ownership from the Command Line

xercise 6-1: Managing Ownership

Managing File and Directory Permissions

ow Permissions Work

Managing Permissions from the Command Line

xercise 6-2: Managing Permissions

Working with Default Permissions

Working with Special Permissions

xercise 6-3: Managing Default and Special Permissions

onfiguring File Attributes and Access Control Lists

le Attributes

le Access Control Lists

hapter Review

uestions

nswers

 Managing Storage

n Overview of Storage

he Master Boot Record

he GUID Partition Table

he Device Naming Conventions

iewing Disk Partitions

reating Partitions

artition Considerations

disk Partitioning Utility

arted Partitioning Utility

disk Partitioning Utility

lock Device Encryption

reating Filesystems

vailable Filesystems

uilding a Filesystem

Mounting a Filesystem

Mounting Filesystems Automatically at Boot

nmounting a Partition with umount

Managing Linux Filesystems

sing df to Verify Free Disk Space

sing du to Verify Directory Usage

eporting Filesystem Status Using dumpe2fs

erifying XFS Filesystems Using xfs_admin

hecking the Filesystem Integrity

Managing Quotas

diting /etc/fstab to Set Up Quotas

reating Quota Database Files

ssigning a Quota to Users and Groups

xercise 7-1: Managing Linux Partitions

hapter Review

uestions

nswers

 Configuring Volume Management

mplementing Logical Volume Management

VM Components

VM Configuration

VM Snapshots

xtending LVMs

reating Archives and Performing Compression

electing a Backup Medium

electing a Backup Strategy

inux Backup and Compression Utilities

xercise 8-1: Backing Up Data

nabling Redundant Array of Independent Disks

onfiguring Software RAID

erifying RAID Status

xercise 8-2: Configuring RAID and Logical Volumes

hapter Review

uestions

nswers

 Managing Linux Processes

nderstanding Linux Processes

ypes of Linux Programs

ser Processes Versus System Processes

ow Linux Processes Are Loaded

Managing Processes

tarting System Processes

iewing Running Processes

rioritizing Processes

Managing Foreground and Background Processes

nding a Running Process

eeping a Process Running After Logout

xercise 9-1: Working with Linux Processes

cheduling Jobs

sing the at Daemon

sing the cron Daemon

xercise 9-2: Scheduling Linux Processes

sing systemd timers

hapter Review

uestions

nswers

 Managing Linux Applications

sing a Package Manager to Install Applications

nstalling Applications on Red Hat with RPM

PM Package Naming Conventions

PM Command Options

PM Application Installation

PM Application Upgrades

PM Application Removal

PM Application Verification

PM Database Querying

PM Conversion to CPIO

xercise 10-1: Practicing Package Manipulation with RPM

nstalling RPMs with YUM, DNF, and ZYpp

he YUM Package Manager

xercise 10-2: Practicing Package Manipulation with YUM

he DNF Package Manager

he ZYpp Package Manager

nstalling Applications on Debian with dpkg

ebian Package Naming Conventions

Managing Applications with dpkg

iewing Application Information with apt-cache

nstalling Applications on Debian with APT

roubleshooting an Application Crash

sing Universal Linux App Stores

nap Fundamentals

atpak Fundamentals

ppImage Fundamentals

nstalling Applications from Source Code

reparing the Installation Files

ompiling the Executable

nstalling the Executable

xercise 10-3: Building Software from Source Code

ninstalling Software Compiled from Source Code

Managing Shared Libraries

ow Shared Libraries Work

Managing Shared Library Dependencies

xercise 10-4: Working with Shared Libraries

hapter Review

uestions

nswers

 Managing the Linux Boot Process

he BIOS POST Phase

he Classic BIOS

he Modern UEFI

he GRUB2 Bootloader Phase

Modify the GRUB2 Bootloader

hange a Forgotten root Password

xercise 11-1: Working with GRUB2

he Kernel Initiation Phase

ystem V Initialization

he Linux Runlevels

he inittab Startup File

hutting Down the System

he systemd Initialization Phase

ystemd Unit Files

ervice Procedures

argets

ernel Panic

hapter Review

uestions

nswers

 Managing Hardware Under Linux

iscovering Devices

isplaying the Kernel Ring Buffer with dmesg

etecting USB Devices with lsusb

etecting PCI Devices with lspci

Managing Kernel Modules

xercise 12-1: Working with Kernel Modules

eferencing Kernel and User Space

sys and sysfs

dev

onfiguring Hardware Devices

sdev

shw

xercise 12-2: Discovering Devices

onfiguring Bluetooth

lasses

luetooth Commands

onfiguring Wi-Fi

canning for Network Devices

onfiguring a Wi-Fi Network

onfiguring Storage Devices

DE

CSI

ATA

ptical Drives

olid State Drives

SB

dparm

sscsi

rinting in Linux

dding Printers

rinting to a Printer

Managing Printers and Print Queues

anceling Print Jobs

pmove

emoving a Printer or Printer Class

xercise 12-3: Printing

hapter Review

uestions

nswers

 Writing Shell Scripts

dvanced Shell Concepts

lobbing Wildcard Characters

equencing Commands

ommand Substitution

nderstanding Shell Script Components

efining the Interpreter with #!

ommenting with #

efining Variables

eading User Input

sing Positional Parameters

sing Functions

sing Control Operators

xpression Operators

esting with Conditionals

sing Looping Structures

xercise 13-1: Creating a Basic Shell Script

rocessing Text Streams

he tr Command

he cut Command

he nl Command

he od Command

he sed Command

he awk Command

he sort Command

he split Command

he head Command

he tail Command

he uniq Command

he wc Command

xercise 13-2: Processing Text Streams

hapter Review

uestions

nswers

 Managing Linux Network Settings

nderstanding IP Networks

What Is a Protocol?

ow IPv4 Addresses Work

ow IPv4 Subnet Masks Work

onfiguring Network Addressing Parameters

ssigning NIC Nomenclature

onfiguring IPv4 Parameters

xercise 14-1: Working with Network Interfaces

onfiguring Routing Parameters

onfiguring Name Resolver Settings

onfiguring IPv6

roubleshooting Network Problems

sing a Standardized Troubleshooting Model

sing ping

sing netstat

sing traceroute

sing nc

sing Name Resolution Tools

ynchronizing Time on a Network

xercise 14-2: Working with Network Commands

nderstanding Network-Based Filesystems

etwork File System (NFS)

amba

hapter Review

uestions

nswers

 Understanding Network Security

nderstanding How Encryption Works

ymmetric Encryption

symmetric Encryption

ntegrity Checking via Hashing

mplementing Secured Tunnel Networks

ow SSH Works

onfiguring SSH

xercise 15-1: Working with SSH

ogging In to SSH Without a Password

xercise 15-2: Configuring Public Key Authentication

irtual Private Networks

onfiguring High-Availability Networking

etwork Bridge Control

etwork Bonding

nderstanding Single Sign-On

ADIUS

DAP

erberos

ACACS+

efending Against Network Attacks

Mitigating Network Vulnerabilities

mplementing a Firewall with firewalld

xercise 15-3: Implementing Network Security Measures with firewalld

mplementing a Firewall with iptables

xercise 15-4: Implementing Network Security Measures with iptables

ncrypting Files with GPG

ow GPG Works

sing GPG to Encrypt Files

sing GPG to Revoke Keys

xercise 15-5: Using GPG to Encrypt Files

hapter Review

uestions

nswers

 Securing Linux

ecuring the System

ecuring the Physical Environment

ecuring Access to the Operating System

ontrolling User Access

o Root or Not to Root?

mplementing a Strong Password Policy

ocking Accounts After Failed Authentications

onfiguring User Limits

isabling User Login

ecurity Auditing Using find

xercise 16-1: Managing User Access

Managing System Logs

onfiguring Log Files

sing Log Files to Troubleshoot Problems

sing Log Files to Detect Intruders

nhancing Group and File Security

mplementing SELinux

mplementing AppArmor

xercise 16-2: Managing SELinux Contexts

hapter Review

uestions

nswers

 Applying DevOps: Automation and Orchestration

rchestration Concepts

rchestration Processes

he Git Revision Control System

sing Git

ollaborating with Git

xercise 17-1: Working with a Git Repository

hapter Review

uestions

nswers

 Understanding Virtualization and the Cloud

nderstanding Virtualization

ypervisors

hin vs. Thick Provisioning

irtualization File Formats

Managing Virtual Machines with virsh

irtual Networking

LOB Storage

irtual Machine Shortcomings

nderstanding Containers

ersistent Volumes

ontainer Markup Languages

Managing Containers with Docker and Kubernetes

etting Started with Docker

eploying an Existing Container Image

unning a Container Image

onfiguring Container Persistent Storage

emoving Containers

luster Management with Kubernetes

utomating Installations with Kickstart

hapter Review

uestions

nswers

 Troubleshooting and Diagnostics

Standardized Troubleshooting Model

roubleshooting Computer Problems

erify Hardware Configuration

erify CPU Performance

erify Memory Performance

xercise 19-1: Working with Swap Space

alidate Storage Performance

alidate Other Devices

roubleshooting Network Problems

erify Network Performance

alidate User Connections

alidate the Firewall

xercise 19-2: Troubleshooting Networking Issues

hapter Review

uestions

nswers

 Installing and Configuring Linux

esigning a Linux Installation

onducting a Needs Assessment

electing a Distribution

hecking Hardware Compatibility

erifying System Requirements

anning the Filesystem

electing Software Packages

dentifying User Accounts

athering Network Information

electing an Installation Source

nstalling Linux

xercise 20-1: Installing a Linux System

onfiguring the X Window System

onfiguring the X Server

onfiguring the Display Manager

onfiguring Accessibility

onfiguring Locale Settings

onfiguring Time Zone Settings

onfiguring Printing with CUPS

onfiguring CUPS

onfiguring E-mail

onfiguring SQL Databases

onfiguring Storage

UID Partition Table Components

DE Drives

ocating a Device

hapter Review

uestions

nswers

 Objective Map

xam XK0-005

 About the Online Content

ystem Requirements

our Total Seminars Training Hub Account

rivacy Notice

ngle User License Terms and Conditions

otalTester Online

ther Book Resources

erformance-Based Questions

irtual Machines

ideos

echnical Support

Index

ACKNOWLEDGMENTS

Thank you to my wife, Cheryl, and my children, Theo and Aria, for

allowing Daddy to toil, peacefully, in the basement, alone, to complete this

work.

Also I would like to thank my Cass Technical High School teachers Mr.

Max Green and Mr. Walter Downs, a Tuskegee Airman who felled 6 ½

enemy aircraft in WWII, for giving me my “serious fun” teaching style.

Dr. David “Doc” Green and Dr. Duane McKeachie of Kettering University

showed me how to simplify difficult concepts for students.

Dr. Larry Stark and Dr. Masayoshi Tomizuka of the University of California

at Berkeley introduced me to UNIX, which has taken me further than I

imagined.

—Ted Jordan

INTRODUCTION

Congratulations on your decision to become CompTIA Linux+ certified!

By purchasing this book, you have taken the first step toward earning one

of the hottest certifications around. Being CompTIA Linux+ certified

provides you with a distinct advantage in today’s IT job market. When you

obtain your Linux+ certification, you prove to your employer, your

coworkers, and yourself that you truly know your stuff with Linux.

The new CompTIA Linux+ exam, XK0-005, is an expanded version of

the previous CompTIA Linux+ XK0-004 exam. In addition to Linux, it

covers some DevOps, virtualization, and cloud topics. The Linux portion of

the test includes SELinux and other security topics as well as device

management firewall and server commands used in a multiserver

environment.

The XK0-005 exam is designed for those with at least 12 months of

hands-on experience working with Linux servers as a Linux, cloud, or

DevOps support engineer. The exam includes both multiple-choice and

performance-based questions, requiring a working knowledge of the topics

listed in the CompTIA Linux+ exam objectives, described later in this

introduction.

We first need to introduce you to the nuts and bolts of this book and the

CompTIA Linux+ certification program. We’ll look at the following topics:

 Who this book is for

 How to use this book

 How this book is organized

 Special features of the All-in-One certification series

 The CompTIA Linux+ certification exam

 Tips for succeeding on the Linux+ certification exam

Let’s begin!

Who This Book Is For

Before you start this book, you need to be aware that we have two primary

goals in mind:

 To help you prepare for and pass the Linux+ exam offered by CompTIA

 To provide you with the extra skills and knowledge you need to be

successful on the job after you are certified

How to Use This Book

We suggest you use the virtual machine image supplied with the book (see

Appendix B for more details). Although it is a large download, the image

contains everything you need to study for the test offline. The image is

CentOS 7–based, but it also contains Docker images to review the material

specifically related to Fedora, openSUSE, and Debian. We have also

included an Ubuntu image. Each of these images may be opened by

executing the fedora , opensuse , debian , or ubuntu

commands.

Prior to working with the image, make a clone. Before experimenting,

make a snapshot so that if you mess up you can just roll it back. Don’t be

afraid to trash the image. That is what learning is about.

There are two users on the system: root and student1 . To log in

as root from the graphical interface, select Unlisted and then use the

username root and the password password . To log in as

student1 , select student1 and supply the password student1 .

We have also provided a directory called /LABS . This directory

contains lab files for specific chapters. Each chapter directory contains a

source directory and a work directory. We suggest you practice with

the copy in the work directory; if you make a mistake or want to start

over, you can easily copy the original lab files from the source directory

to the work directory.

As you are reading, use the Linux image to test what you have read.

Read a section and then try the commands in the section. These actions will

help you remember the material better and also improve your problem-

solving skills. Most chapters also include one or more exercises. When you

encounter an exercise, do each step. Don’t just scan the exercise—

understand what each step does. Anticipate what your actions will affect

and then verify the results. If something unexpected happens, try to

understand why, and try again.

The activities help you understand the material better and are similar to

the exam’s performance-based questions. So don’t just read the activities or

watch the videos; perform them so that you can pass the exam the first time.

In some exercises we have not supplied all the steps. We are not trying to

trick you. We want you to build the assessment skills that you will need not

only when taking the CompTIA Linux+ exam but also in real life. Always

ask, what do I have to complete? What do I need for this function to work?

Examine pertinent variable or parameter settings as well as related

configuration files. If you are having difficulty, each exercise has an

accompanying video available in the online content that demonstrates how

to perform the exercise.

Take your time studying. The object of the CompTIA Linux+ exam is to

certify that you know what you are doing, not that you can pass a test.

Rome wasn’t built in a day. Take the time to prepare. If you can explain

concepts, can complete the exercises while understanding them, and can

discriminate why a question’s answer is correct whereas other choices are

incorrect, you are ready to take the exam.

How This Book Is Organized

The CompTIA Linux+ exam objectives, as currently published, are

organized by topic. They aren’t organized into a logical instructional flow.

As you read through this book, you’ll quickly notice that we don’t address

the CompTIA Linux+ objectives in the same order as they are published by

CompTIA. All the objectives are covered; however, we’ve reorganized

them such that we start with the most basic Linux concepts first. Then, as

we progress through the book, we address increasingly more advanced

CompTIA Linux+ objectives, building on the skills and knowledge covered

in preceding chapters.

The Exam Objective Map in Appendix A has been constructed to help

you cross-reference the official exam objectives from CompTIA with the

objectives as they are presented and covered in this book. The exam

objectives are listed in the left column of the table exactly as CompTIA

presents them, and the right column identifies the corresponding chapter(s)

in which each exam objective is covered.

Special Features of the All-in-One Certification Series

To make the All-in-One Certification series exam guides more useful and a

pleasure to read, McGraw Hill has designed the series to include several

conventions that you’ll see throughout this book.

Icons

To alert you to an important bit of advice, a shortcut, or a pitfall, you’ll

occasionally see Notes, Tips, Cautions, and Exam Tips peppered throughout

the text.

NOTE Notes offer nuggets of especially helpful stuff, background

explanations, and information. They also define terms occasionally.

TIP Tips provide suggestions and nuances to help you learn to finesse

your job. Take a tip from us and read the Tips carefully.

CAUTION When you see a Caution, pay special attention. Cautions

appear when you have to make a crucial choice or when you are about to

undertake something that may have ramifications you might not

immediately anticipate. Read them now so that you don’t have regrets later.

EXAM TIP Exam Tips give you special advice or may provide

information specifically related to preparing for the exam itself.

End-of-Chapter Reviews and Questions

An important part of this book comes at the end of each chapter, where you

will find a brief review of the main points, along with a series of questions

followed by the answers to those questions. Each question is in multiple-

choice format.

The questions are provided as a study aid to you, the reader and

prospective CompTIA Linux+ exam taker. We cannot guarantee that if you

answer all of the questions correctly you will absolutely pass the

certification exam. But we can guarantee that the questions will provide you

with an idea about how ready you are for the exam.

Online Content

This book comes with access to virtual machine files you can download and

use to set up your very own Linux system to practice with. It also includes

access to video clips from the authors demonstrating many of the exercises

you’ll find within the book’s chapters, as well as TotalTester practice exams

to prepare you for the real certification exam. Read more about the online

content and how to access it in Appendix B.

The CompTIA Linux+ Certification Exam

Now that you understand how this book is organized, it’s time for you to

become familiar with the CompTIA Linux+ certification program and the

associated exam. Let’s review the following topics:

 About the CompTIA Linux+ certification

 Taking the CompTIA Linux+ exam

About the CompTIA Linux+ Certification

The CompTIA Linux+ certification is an excellent program! It is a vendor-

neutral certification designed and administered by the Computing

Technology Industry Association, affectionately known as CompTIA.

The CompTIA Linux+ certification is considered “vendor neutral”

because the exam is not based on one specific vendor’s hardware or

software. This is somewhat unique in the information technology industry.

Many IT certification programs are centered on one particular vendor’s

hardware or software, such as those from Microsoft, Cisco, SUSE, or Red

Hat.

The CompTIA Linux+ certification, on the other hand, is designed to

verify your knowledge and skills with the Linux operating system in

general, not on any one particular distribution. The following is according

to CompTIA (at the time of writing):

CompTIA Linux+ validates the skills administrators need to secure the

enterprise, power the cloud and keep systems running. The new

certification ensures that IT professionals, software developers,

cybersecurity engineers and penetration testers have these necessary skills

to support today’s tech systems.

CompTIA Linux+ is the only job-focused Linux certification covering the

latest foundational skills demanded by hiring managers. Unlike other

certifications, the new exam includes performance-based and multiple-

choice questions to identify the employees who can do the job. The exam

covers tasks associated with all major distributions of Linux, setting the

foundation for advanced vendor/distro-specific knowledge.

As previously mentioned, CompTIA has published objectives for the

exam that define the CompTIA Linux+ certification. These exam objectives

specify what a Linux system administrator should know and be able to do.

The CompTIA Linux+ exam objectives (along with practice exams) are

available at https://comptia.org/certifications/linux, upon submitting a brief

registration form. To be CompTIA Linux+ certified, you must be able to

perform the tasks contained in these objectives.

https://comptia.org/certifications/linux

Taking the CompTIA Linux+ Exam

The CompTIA Linux+ exam is a timed exam and delivered electronically

on a computer. The exam is composed of 90 questions and must be

completed within 90 minutes. (A countdown timer is provided in the upper-

right corner of the screen.)

NOTE You might actually see fewer than 90 questions on the exam

because performance-based questions (PBQs) carry more weight. Expect to

see about 5 PBQs. The more PBQs on the exam, the fewer total questions

provided. Partial credit is granted on PBQs.

The exam interface is fairly straightforward. Items are displayed one at a

time on the screen. You are presented with a question along with a series of

responses. You mark the appropriate response and then go to the next

question. You are allowed to go back to questions that you’ve marked for

review.

Each exam is composed primarily of multiple-choice items. Most of the

multiple-choice questions require only one answer; however, some will

require the selection of multiple correct responses. If you forget to select

one, the exam will warn you that your answer is incomplete.

After you complete the exam, the computer will immediately evaluate it

and your score will be printed out. To pass, you need a minimum score of

720 points out of a possible 900. If you do not pass, your score printout will

list the objectives where you missed questions. You can use this information

to review and prepare yourself to retake the exam.

To make the exam globally available, CompTIA administers the

CompTIA Linux+ exam through its testing partner, Pearson VUE

(https://home.pearsonvue.com). When registering at Pearson VUE, you

have the option to choose a testing center or to take the exam at home.

https://home.pearsonvue.com/

Figure 1 Locating a testing center near you

NOTE To take the exam at home, make sure you use a room that is very

neat and free of books. No one can walk in the room while you are taking

the exam; otherwise, the proctor will fail you, and no refunds. Learn more

here: https://www.comptia.org/testing/testing-options/take-online-exam

To sign up for the CompTIA Linux+ exam, visit the CompTIA website

https://store.comptia.org and purchase an exam voucher. You will find a

promotional code for a 10 percent discount off the price of the exam

voucher at the back of this book. Then visit the Pearson VUE website and

locate a testing center near you. Just specify the exam you want to take and

your local information. Unless you selected to take the exam at home, you

will then be provided with a list of testing centers near you, as shown in

Figure 1. Learn more here: https://www.comptia.org/testing.

Then use the Pearson VUE website to schedule the exam and submit the

exam voucher. You can also call the test provider directly and schedule the

exam over the phone. Be aware that they will need to verify your identity,

so be prepared to share your Social Security or National ID number. The

test provider will send you a confirmation e-mail listing the time and

location of your exam.

https://www.comptia.org/testing/testing-options/take-online-exam
https://store.comptia.org/
https://www.comptia.org/testing

On the day of the test, be sure to allow adequate travel time. You never

know when you will run into a traffic jam or your car will break down. Try

to show up early. If you are taking your exam at a community college, you

may have to walk a very long distance to reach the exam.

When you check in at the testing center, you will be required to show

two forms of original, unexpired identification, at least one of which must

have your photo on it. The following are acceptable forms of ID:

 Driver’s license

 Passport

 Social Security card or National ID card

 Signed credit card

 Common Access Card

 Personal identity verification card

 Military ID card

 NEXUS card

 State-issued ID card

When you check in, you must surrender your phone, tablet, keys, wallet,

reference materials, and so on to the test proctor, who will place them in a

locker. The center may inspect your eyeglasses for cameras. You are not

allowed to take any materials into the exam room, including blank paper.

Most testing centers will provide note-taking materials that remain in the

room after the exam is completed.

Tips for Succeeding on the CompTIA Linux+ Certification
Exam

Over the last decade, we have helped hundreds of candidates prepare for a

variety of certification exams. As a result, we have learned several tips to

help you pass the exam.

The most important things you can do are to thoroughly study and

practice. No tip, trick, or strategy can compensate for a lack of study and

practice. The goal is to move the information into your long-term memory.

Here are some study tips to help you prepare.

Preparing for the Exam

 Set a daily study appointment. Start slow and build. Start with a half hour a

day, and work up to an hour session twice a day if possible. (Studying two

hours in a row is not productive.) Remember to keep this appointment just

as you would any other important appointment. If you miss an appointment,

don’t worry; just don’t miss the next one. Don’t study more than two one-

hour sessions per day.

 If you are studying after work, give yourself a chance to wind down. Try

taking a shower and changing clothes. Maybe take a walk or spend some

time listening to music. If you are hungry, eat light and healthy. Avoid

watching video games or television before you study.

 Ensure that your study environment is well lit and uncluttered. Turn off the

telephone. Have everything you need to study within your study

environment. Once you sit down to study, stay there.

 Use flashcards and mind maps. These are great study tools. For more

information on how flashcards can help, view the information found on the

Mnemosyne Project website (https://mnemosyne-proj.org/).

 Maintain study health. Make time to get exercise and rest for best

performance. Exercise facilitates study. We are not telling you to go to a

gym; try walking after lunch and dinner. Television, video games, and cell

phones interfere with study and sleep hours long after you have turned them

off.

 Study in manageable chunks. After you have read a section, when possible,

use the virtual machine image to validate what you studied. Make

flashcards and mind maps to help retain that section’s material, and use

these tools for future study.

https://mnemosyne-proj.org/

 When you come to a quiz or chapter exam, don’t blow through it. Use the

opportunity to learn how to evaluate a question. Make certain you

understand why the correct answer or answers are correct and the other

answers are incorrect.

 When you do the exercises, understand what each command does and how

and where to test the results. Before you execute a command, determine

what settings or configuration files will affect the command. Using this

methodology will help you in real life and when breaking down questions.

Get into the habit of executing a command and then testing the results.

Some people recommend setting a deadline by scheduling your exam in

advance. We can’t recommend that strategy for everyone. Scheduling the

test can be productive or counterproductive. Setting a 30- or 60-day

deadline may put unnecessary pressure on you, especially if you find a

chapter that is giving you problems. We have seen success with the tortoise

approach: slow and steady. If you are truly motivated to accomplish your

goal, you will. Use your motivation to keep your study appointments. When

you are ready to take the test, schedule the exam. If, however, you are the

type of person who thrives under a deadline, go ahead and schedule the

exam.

Close to the Exam Date

 Continue to use your flashcards and mind maps to review the material.

 Familiarize yourself with what 60 seconds of time passing feels like.

During the test, the worst thing you can do is get stuck on a question. Use a

timer to get used to 60-second intervals. When taking the test, if you can’t

answer a question within 60 seconds, mark the question to return to later.

 Practice evaluating questions. Write down key points or create a simple

diagram.

 Pretend you are teaching the material. Try to explain the material in a

section. If you can explain it, you know it.

 Use the virtual machine image and apply the knowledge you have learned.

The Night Before Your Exam

 Don’t study.

 Place all the paperwork you will need for the exam in one place.

 Get a good night’s rest.

 Set your alarm to allow plenty of time in the morning to get ready and go to

the testing center.

Taking the Exam

 Evaluate the question. Determine what the question is asking. Break out the

question into what information is pertinent and what is fluff. Determine

how you would solve the problem. Here’s an example:

User student1 wants to copy a file in the subdirectory

/public/test to the directory /data . User student1 does not

own either of the parent directories, /public or /data , but is a

member of the group that is the group owner for all directories. The group

has read and execute permissions for all directories. What command will

enable student1 to copy the file from /public/test to /data ?

To answer the question, you must be familiar with which permissions are

necessary to copy a file from one directory to another. To copy the file, you

need execute permissions on the source directory and write and execute

permissions on the target directory.

The question tells you that student1 is a member of the group that has

group ownership of all directories and the group has read and execute

permissions.

What is missing? User student1 cannot write the file to the target

directory, /data , because the group that student1 belongs to only

has read and execute permissions.

What is required? The group owners need write permissions on directory

/data .

Now you can look for the answer or answers that will apply write

permissions to the directory /data .

 Visually assess the question. You can use the writing materials given to you

to. As you had practiced earlier, write down key points or create a simple

diagram. This might seem like a waste of time, but visual clues can help

bring back memory. Your brain stores and relates to data in memory based

on context.

 Read each answer carefully. Use the information from your assessment to

determine if an answer satisfies the question’s requirements. Eliminate the

obviously incorrect answers first.

 Make your best choice and move on. From experience, we know that your

first impression is usually the correct one.

 Don’t spend more than 60 seconds on a question. If you pass 60 seconds,

mark the question so you may return to it and move on.

NOTE Performance-based questions can take about 5 minutes to

complete. Skip these and save them for the last 30 minutes of the exam.

This will give you time to finish multiple-choice questions. Answer all

questions. Don’t leave any blank.

 Your first answer is usually correct. If you are concerned about a question,

mark it for review and return to it later, but your first answer is usually

correct.

After you finish the exam, your results will be automatically printed out

for you. The report will be embossed with the CompTIA-certified examiner

seal by your test proctor to certify the results. Don’t lose this report; it is the

only hard copy you will have until you receive your certification in the

mail.

The report will display your performance on each section of the exam.

The CompTIA Linux+ exam is pass/fail. Based on the information available

upon publication of this book, if you score 720 or better, you pass!

If you don’t pass, you can use the information on your report to identify

the areas where you need to study. You can retake the exam immediately if

you wish. However, there are two things to keep in mind:

 You have to pay full price for the retake exam (although you can find

discount coupons via a quick online search).

 The retake exam probably will not be the same as your first exam.

If you don’t pass the second exam, you must wait at least 14 days before

taking the exam a third time.

If you fail with a score of 650 or higher, we suggest you study up on the

items missed and schedule your retake within a day or two. If you wait any

longer than that, your memory will probably go “cold,” and you may need

to go through the entire preparation process again.

EXAM TIP Avoid TNC failure! CompTIA provides you 28 minutes to

read the “Terms and Conditions” (TNC) for the exam. If you do not select

ACCEPT within that time period, whether you have finished reading the

terms or not, the screen defaults to “Denied Acceptance of Terms,” the

exam shuts down, and your test voucher is “burned.” No refunds. No

voucher reuse. You must spend another $358 to schedule the exam again.

Therefore, be sure to read the Candidate Agreement at the CompTIA

website, before taking the exam: https://www.comptia.org/testing/testing-

policies-procedures/test-policies.

https://www.comptia.org/testing/testing-policies-procedures/test-policies

CHAPTER 1
An Introduction to Linux and a Pre-Assessment
Exam

In this chapter, you will learn about

 A brief history of Linux

 Linux operating system structure

 Linux distributions

 Common Linux implementations

The possibilities of our returning from this mission in one piece may have

just doubled.

—Nichelle Nichols as Lt. Uhura, Star Trek

A Brief History of Linux

To understand Linux and its different distributions, you need to understand

what was going on in the world of computing before Linus Torvalds began

developing the Linux kernel. The 1950s saw the evolution of computers

from single-user, single-task systems to batch processing systems.

The discussion starts from the mid-20th century and continues until the

development of Linux, as follows:

 Batch processing

 MULTICS

 UNIX

 LINUX

Let’s start with programming in the mid-1950s.

Batch Processing

Batch processing is the sequential execution of programs. A programmer

would submit a program on punch cards or paper tape to a system operator.

The system operator would later “run” the job and give the results back to

the programmer.

Unfortunately, a programming error, typing error, damaged card (or

tape), or card out of sequence would cause the program to fail. The

programmer would have to repair the difficulty and resubmit the job.

ARPA/DARPA

On October 4, 1957, the Soviet Union launched Sputnik. The launch had

many people wondering if the United States was falling behind technically.

At that time, the U.S. Army, Navy, and Air Force had their own defense

development projects. The rivalries between the services were unproductive

and wasteful.

President Eisenhower asked members of his Science Advisory

Committee to meet with newly appointed Secretary of Defense Neil

McElroy to find a solution to the problem. The scientists’ solution was to

have a single civilian agency to control research and development and

report to the Secretary of Defense.

Six months after the establishment of the Advanced Research Projects

Agency (ARPA), NASA was created to separate civilian and military space

travel. In 1972, ARPA’s name was changed to DARPA (the Defense

Advanced Research Projects Agency).

Compatible Time-Sharing System

Batch processing could not keep up with the increasing demand for

computer resources. Massachusetts Institute of Technology (MIT) was one

of several colleges that began to develop time-sharing systems, which allow

multiple users to access system resources concurrently through remote

terminals.

MIT developed an experimental time-sharing system, called Compatible

Time Sharing System (CTSS), and produced the following applications that

were later used in UNIX:

 RUNOFF A text formatting and printing utility that was the predecessor of

roff , groff , nroff , and troff .

 RUNCOM (run commands) One of the first applications for running

scripts. The rc directories in Linux’s /etc/init.d directory are

named after RUNCOM scripts.

MULTICS

In 1964, MIT, General Electric, and Bell Labs began development of the

Multiplexed Information and Computing Service (MULTICS) operating

system funded by DARPA. The goals for MULTICS were as follows:

 Remote terminal use

 Continuous operation

 A high reliability internal filesystem

 Support for a wide range of applications executing concurrently

 A system that can evolve with changes in technology and user requirements

Honeywell and MIT completed MULTICS and launched the first

commercial version in October 1969. MULTICS remained a viable

operating system for 25 years.

UNIX

Computer scientists Ken Thompson and Dennis Ritchie of Bell Labs

worked on the MULTICS project. After Bell Labs withdrew, Ken

Thompson decided he would develop his own operating system based on

MULTICS operating principles. The initial version was released in 1970

and was called UNICS, for Uniplexed Information and Computing.

NOTE The UNIX development team consisted of Ken Thompson, Dennis

Ritchie, Doug McIlroy, and Joe Ossanna.

The first two versions of UNICS were written in assembly language for a

specific processor family. Applications written in assembly language for

one processor family had to be rewritten for another processor family.

Dennis Ritchie developed the programing language C. Compiled

languages convert source code to assembly language, which mitigated the

need to rewrite the operating system for each new processor family. In

1973, UNICS was rewritten in C and renamed UNIX.

In 1974, AT&T held a monopoly on the U.S. telephone systems. As part

of an agreement with the federal government, the company could keep its

monopoly but was not allowed to sell software. Since it could not sell

UNIX, AT&T licensed UNIX to educational institutions for a small

distribution charge. This allowed colleges and universities to obtain the

operating system and use it for teaching and development.

In 1982, AT&T was broken up into smaller phone companies, which

permitted AT&T to sell software. Thus, UNIX was no longer “free” to

educational institutions.

MINIX

When Andrew Tanenbaum heard AT&T UNIX Version 7 would no longer

be made available for educational institutions, he began to work on MINIX,

a microkernel-based, UNIX Version 7–compatible operating system.

Initially, the operating system kept crashing, and Tanenbaum was about to

terminate the project until one of his students informed him the crash was

due to the Intel chip overheating, generating a thermal interrupt.

Tanenbaum fixed the problem, and MINIX was released freely to

universities in 1987. Unfortunately, MINIX was copyrighted; therefore, no

one was allowed to modify the source code. In 2000, MINIX licensing was

changed to a permissive license called the Berkeley Software Distribution

(BSD). Permissive licensing allows users to modify the source code but

does not require modified source code to be made available.

The current version is MINIX 3 and is designed to be used in embedded

systems. An embedded system contains an operating system and control

program that is used to manage a specific device such as a FAX machine or

digital camera.

GNU

On September 27, 1983, Richard Stallman announced the GNU project

(GNU stands for GNU is Not UNIX). GNU was to be a free UNIX-like

operating system that could be shared, studied, and modified by anyone. At

that time, a free (as in cost) and open source version of UNIX did not exist.

AT&T no longer provided free versions of UNIX to learning institutions,

and Andrew Tanenbaum’s MINIX was copyrighted.

In 1985, Stallman founded the Free Software Foundation and, with

attorney David Wheeler, created the General Public License (GPL). GPL is

also referred to as copyleft. The GPL license dictates that any software or

work of art may be modified and distributed freely as long as the modified

versions are also distributed without restrictions or cost.

Since no free UNIX kernel existed, the GNU project had to develop one.

Linux

Linus Torvalds entered the University of Helsinki in 1988. At that time,

most universities used MINIX to teach UNIX to their students. Torvalds did

not like the MINIX terminal emulator and decided to write a better one. As

he added functionality to his emulator, he concluded it would be better to

create an operating system from scratch.

On September 17, 1991, Torvalds released a development environment

called Freax (Free UNIX) under a GPL license. Freax used many of the

tools and utilities created by Richard Stallman’s GNU project. One of the

major design differences was that Torvalds decided to use a monolithic

kernel rather than a microkernel. Six months later, the name of the

operating system was changed to Linux. Linus then posted the source code

and invited other programmers to review, modify, and contribute

enhancements. This was the original Linux operating system.

Linus Torvalds holds a registered trademark for the Linux operating

system and controls Linux kernel development. When most people talk

about Linux, they’re usually talking about an operating system with a Linux

kernel.

Linux Operating System Structure

An operating system provides a means for users to execute programs on a

computer. The Linux operating system consists of multiple functional layers

(layered architecture), as detailed in the following list:

 Hardware layer Responsible for interacting with system hardware.

 Kernel The kernel layer is the core of the operating system. It provides the

system with process, memory, and task management.

 Shell Application and user environment and interface.

 Operating system software Used to manage the operating system.

 Application software Editors and other user applications.

In this section you will learn the following details about the Linux

operating system structure:

 Kernel

 Operating system software

 Application software

Let’s first explore the Linux kernel.

Kernel

The kernel layer is the core of the operating system. Most Linux

distributions use a monolithic kernel. Some (GNU) use a microkernel. The

kernel also connects applications to system hardware. The kernel is divided

into the following components:

 System Call Interface (SCI) Provides a connection between user space

and kernel space

 Process management Responsible for creating, stopping, and

communicating with system processes

 Memory management Responsible for memory allocation, virtual

memory, and paging

 Virtual filesystem Provides an abstraction layer for multiple filesystem

types

 Network stack Provides protocols used in network communications

 Device drivers Software used to communicate with hardware

 Architecture-dependent code System code specific to the type of

processor

To understand the difference between a monolithic kernel and a

microkernel, you must understand the terms user space and kernel space.

Kernel processes execute in memory reserved for kernel processes (kernel

space). User processes execute in memory reserved for user applications

(user space). Separating user and kernel space protects kernel processes.

Monolithic Kernel

A monolithic kernel executes in kernel space. Monolithic kernels are made

up of modules that perform specific functions. These modules may be

dynamically loaded or unloaded.

Microkernel

A microkernel uses a small kernel executing in kernel space to manage

memory, multitasking, and interprocess communication. Most other kernel

functions are built in to “servers” that execute in user space.

Operating System Software

Operating system software is designed to manage system resources and

provide a platform for application software. Most operating system

software starts as part of the boot process and terminates when the system is

shut down. (Details on operating system software are discussed in Chapter

11.)

After the system boots up, it’s time to log in. Whether you are using a

command-line interface (CLI) or graphical user interface (GUI), the system

will prompt for your username and password, as shown here in a CLI:

When you type in your password, the cursor does not move and no

******** displays either, but the password is being read by Linux.

EXAM TIP The focus of the CompTIA Linux+ exam is use of the CLI,

not the GUI.

Administrator Rights

The Linux+ certification exam proves you have the skillset to be a Linux

administrator, not a Linux user, so you need to learn how to enable

administrator rights on Linux systems. The two methods discussed here

involve using the su and sudo commands.

su stands for switch user and allows you to become any user, but the

default user is root . The root user can perform any function on Linux,

such as kill any job, set up a network, or remove any file. Running su

requires you to know the root password to become root , which is why

many Linux administrators prefer sudo .

The sudo command allows you to run a single command with root

privileges. Two advantages of sudo versus su is that you do not need to

know the root password, and you don’t stay in the root account.

Instead, you immediately return to a standard account, as shown here:

The preceding example shows that using su converts you to the root

user, as indicated by the root # prompt. To return to a standard user, run

the exit command.

The passwd command is most commonly used to change your

password. Running passwd -S displays user account status such as your

login name, whether a password is set, date of the last password change,

minimum password age, maximum password age, password warning

period, inactivity period for the password, and the type of encryption used

on the password.

NOTE If you are working in the GUI, to launch a command-line terminal

click Activities and open the search bar, then search on terminal. Or,

choose Applications | System Tools and choose Terminal.

Troubleshooting User Login and Password Issues

If you are having trouble logging in to a Linux system, first make sure you

have an account on that system. After verifying this, make sure your

settings in /etc/passwd are defined correctly. The /etc/passwd

file is discussed in Chapter 4.

Once you are certain you have an account on the system and your

password is not working, first make sure that the Caps Lock key is not

engaged. Linux is a case-sensitive operating system, and that includes

passwords. Pass123! , PASS123! , and pass123! are three distinct

passwords on a Linux system. Strong passwords and security are discussed

in Chapter 16.

Application Software

Application software is user-space software (for example, editors and

spreadsheets) designed to perform specific tasks. Application software is

not required to run the operating system. Application software only

executes or terminates when requested by a user or another application.

Some important commands for CompTIA Linux+ certification include

ls , cd , pwd , and more , as detailed in the following sections. (Feel

free to try some of these commands on the virtual Linux system provided

with this book.)

The ls Command

Type the ls command at the ted $ prompt to list the files in your

current directory, as shown here:

The output shows that there are four files in the directory.

Like most commands on a Linux system, the ls command takes

options. Everything on a Linux system is a type of file. Using the -F

option, you can see what type a file is:

The preceding output shows that Desktop is a directory because the

/ follows the name. file1 is a regular file, file2 is a shortcut or

symbolic link because the @ symbol follows the name (discussed in

Chapter 3), and file.sh is an executable file because the * symbol

follows the name (discussed in Chapter 6).

The cd and pwd Commands

Directories are like folders in a file cabinet and help you organize your files.

To display your current working directory, use the pwd command as

shown here:

The output shows you are currently in the /home/ted directory.

To change directories, use the cd command, as shown here:

Running cd Desktop moves your working directory to

/home/ted/Desktop . When you run the ls command here, you see

there is one file in this directory, called file4 .

To return to the original working directory enter cd .. . This

command moves you up one directory.

NOTE Like most books, periods are used to end a sentence in this book.

But, periods are often used in Linux commands. If you try a command and

it fails, it’s possible you placed a period at the end of a command when you

shouldn’t, or vice versa. In the exercises in this book, when you are

instructed to type a command, the command appears in bold, including any

period in the command.

The history , who , and whoami Commands

To view a list of the commands that you just ran, use the history

command, as shown here:

There are several ways to rerun a command listed in your command

history. The first method is to use the arrow keys. Start with the Up

Arrow key to view the most recently run command. The other arrow keys

can be used to modify a command or view other commands.

The next method is to use the ! (or bang) key. For example, to rerun the

pwd command, enter !8 . That reruns command number 8 , which is

pwd .

The final method is to run ! with the first few characters of the

command to rerun. For example, !p will rerun pwd because it is the

most recent command that starts with p , as shown here:

The whoami command displays who you are logged in as. The who

command shows who is currently logged in to the system and which

terminal they are using, as shown here:

These tools and more are discussed in Chapters 4 and 5.

The echo , cat , and more Commands

The echo command is used for several purposes. It can be used to simply

see how arguments will appear, to create a file, or to modify a file as shown

here:

The echo command simply echoes the arguments provided.

To save the echo output to a file instead of displaying it on the screen,

use the > as a redirect. In the preceding example, > redirects output to

file3 instead of the screen. To see the content saved within file3 ,

use either the cat command or more command.

EXAM TIP In Chapter 2, you will learn how to modify files like file3

with a text editor named vi or nano .

The more command is more useful than cat when viewing a large

file like /etc/passwd . Running cat /etc/passwd scrolls through

about 50 lines faster than you can read!

The more command dumps out a page at a time. When you run more

/etc/passwd , press the Enter key to view the next line, or the

Spacebar to scroll another page. To quit from more , press the q key.

Details on the cat , more, and less commands are discussed in

Chapter 5.

Command-Line Continuation Literalization is covered in Chapter 3,

where you will learn how the backslash, \ , makes the next character

literal. This is also true for the Enter key, which on Linux means

“carriage return, new line.” To ignore the meaning of the Enter key, use

the \ as shown here for command-line continuation:

This example is simple, but you can use this feature when you have so

many arguments to a command that they start to scroll off the screen.

NOTE Running echo # hi there results in no output because the

key means “comment.” Any text following the # is ignored in Linux.

The man , whatis , and apropos Commands

To learn more about command arguments and options, use the man

command (man is short for manual). Following is partial output after

running man ls :

man uses more command features so that you can use the Enter

key to view one line at a time, the Spacebar to display an entire page,

and finally q to quit from the manual page.

Manual pages are divided into eight sections. The ls manual page is in

section 1 , as shown in the command-heading parentheses above LS(1) .

The command header is shown in uppercase, but Linux is a case-sensitive

operating system. Running the LS command results in a command not

found error message. The command header is always shown in uppercase

because of historical reasons. It hearkens back to the days when printers and

screens only used uppercase characters. The following list details the

manual page sections:

Section (1) – commands any user can run

Section (2) – system calls

Section (3) – library functions

Section (4) – special files

Section (5) – configuration file formats

Section (6) – games

Section (7) – miscellaneous

Section (8) – administrative user commands

For the rare circumstance that you are not able to access a search engine

like Yahoo, Google, or Bing, Linux offers whatis and apropos . Both

commands search the man pages. The apropos command searches

both the command field and the short description field for any match. The

whatis command searches only the command field for an exact match.

Another way to learn more about how to use a command is to use the -

-help option after the command. For example, ls --help displays

the following partial output:

If the output is long, you may want to send the output to the more

command by using the pipe or | key. The | key shares the \ key on the

keyboard. Just run ls --help | more to use the more paginator.

Technically, the pipe or | sends output of the ls --help command to

become the input of the more command. Try this on the virtual machine

provided with the book.

NOTE In Chapter 13, you will learn another purpose of the | symbol,

where it means “or.” For example, a | b means option a or option b .

Linux Distributions

A Linux distribution is an operating system that contains the Linux kernel

and a specific selection of operating system and application software. The

selection of software is distribution dependent. In this section you will learn

about

 Distribution differences

 Linux derivatives

Distribution Differences

Distributions may have technical or philosophical differences. Some

distributions are designed to perform a specific function in a specific

environment. Others are designed based on the publisher’s interpretation

and adherence to open source guidelines.

Technical Differences

Technical differences between distributions can include operating system

and application software, configuration files, and command differences.

For instance, Red Hat and Debian distributions have the following

differences:

 They use different package managers.

 They have different names for and locations of similar configuration files.

 They have differences in some command implementations.

For example, different versions of Linux use different methods to install

software. Red Hat Enterprise Linux (RHEL) currently uses rpm , yum,

and dnf as its package managers, whereas Debian uses dpkg and apt .

NOTE As of RHEL 8, Red Hat uses the DNF package manager.

Several configuration files are executed when you log in to a Linux

system. The login configuration file in Red Hat is /etc/bashrc , and

the login configuration file in Debian is /etc/bash.bashrc .

Creating new user accounts is done with the useradd command. The

useradd command in Red Hat does not have the same functionality as

the useradd command in Debian. The Red Hat version has the

additional feature of adding a user to a different group. (More details in

Chapter 4.)

Philosophical Differences

Most philosophical differences between distributions are based on their

interpretation of open source licensing. For example, Fedora and Debian

will only use free and open source software, whereas Red Hat allows

proprietary (copyrighted) software.

Red Hat

In 1994, Marc Ewing developed his own Linux distribution called Red Hat

Linux. In 1995, Bob Young purchased Red Hat and merged his UNIX

software distribution company with Marc Ewing’s Red Hat company. Red

Hat is a commercial root distribution using the Linux kernel. Red Hat will

provide its source code, but derivatives must remove any reference to Red

Hat and components that are sold by Red Hat.

Fedora

Fedora is a root Linux distribution that has a large development community.

Fedora uses faster release cycles to provide the latest technology to its

users. Because the Fedora approach is largely experimental, it should not be

used in a production environment.

The Fedora project is sponsored by Red Hat. Many of the advances

developed in Fedora find their way to Red Hat Enterprise.

NOTE Red Hat Enterprise has a separate set of quality control tests from

Fedora, and Red Hat provides support for up to 8 years versus 18 months

for Fedora.

Debian

Debian is a root Linux distribution that was started by Ian Murdock in

1993. Debian’s goal was to provide an operating system based on the

principles of free software. Debian created the Debian Free Software

Guidelines, which are used to determine what software may be included in

Debian.

NOTE Initially, Debian provided two distributions: one distribution used

the Linux kernel and the other distribution used the FreeBSD kernel.

Debian discontinued development of the FreeBSD distribution and is now

managed by the Free Software Foundation.

Linux Derivatives

Derivatives are operating systems derived from a distribution (root

distribution) or another derivative. The derivative operating system may

focus on a specific task by adding more or less software or a modified

kernel.

NOTE A great deal of information on distributions and packages

associated with distributions can be found at https://distrowatch.com.

The Linux kernel has several root distributions and many derivative

distributions. Let’s take a look at a few derivatives of both the Red Hat and

Debian root distributions.

Red Hat Derivatives

SUSE and Oracle Unbreakable Linux are examples of Red Hat derivatives.

SUSE Software und System-Entwicklung (SUSE) developed by a German-

based open source company, and the community version OpenSUSE, both

use YaST rather than Anaconda as a setup program, zypper rather than

yum as a package management application, and AppArmor (by default)

https://distrowatch.com/

over SELinux for enhanced security. Some of these products are covered in

Chapters 11 and 16.

NOTE It is possible to disable AppArmor in SUSE and install SELinux.

Oracle Unbreakable Linux Oracle Linux is a binary-compatible

derivative of Red Hat Enterprise Linux. Oracle customers have a choice of

a compatible kernel or the Unbreakable Enterprise Kernel (UEK). The UEK

is optimized to provide better performance. For details visit

https://docs.oracle.com/en/operating-systems/uek/

Debian Derivatives

Although Debian has multiple derivatives, we are going to briefly look at

two: Kali and Ubuntu.

Kali Kali is one of several Debian derivatives used for penetration testing.

Kali is an example of creating a derivative for a specific task.

Ubuntu Ubuntu is one of the more popular Debian derivatives. Ubuntu,

Linux for human beings, is an example where design philosophy takes

precedence. The word Ubuntu is defined as a quality that includes the

https://docs.oracle.com/en/operating-systems/uek/

essential human virtues of compassion and humanity. Ubuntu’s design

philosophy was to make Linux more usable for human beings.

The Ubuntu Long-Term Support versions (Ubuntu LTS) are the only

versions recommended for production environments because these offer at

least 5 years of updates. Other versions are similar to Fedora in that they are

experimental, and products introduced may disappear in future versions.

Linux Mint and Xubuntu are examples of Ubuntu derivatives.

EXAM TIP The exam focuses on Red Hat 7 derivatives and higher and

Debian 10 derivatives and higher.

Common Linux Implementations

Because Linux is distributed under the GPL, software vendors can

customize Linux to operate in a variety of roles, including the following:

 Using Linux on the desktop

 Using Linux on the server

 Using Linux on mobile devices

 Using Linux for virtualization

 Using Linux with cloud computing

 Using embedded Linux

Linux on the Desktop

Linux can be optimized to function extremely well as a desktop system.

However, Linux has been somewhat slow to make inroads into this market.

As of 2022, Linux had garnered only about 2 percent of the desktop market

share, while Windows occupies over 90 percent.

There has been a historical lack of desktop productivity applications

available for Linux. Fortunately, many productivity applications are

available today that make Linux a viable option for the desktop (for

example, LibreOffice).

Many vendors have been working on desktop-oriented Linux

distributions that seek to simplify it. They have bundled application suites

such as LibreOffice and added an easy-to-use graphical interface. Here are

some of the more popular desktop Linux distributions:

 Ubuntu Desktop Edition

 openSUSE

 Fedora Desktop Edition

Linux on the Server

Linux works great as a server. In fact, Linux has experienced widespread

acceptance in the server room, much more so than on the desktop.

Depending on the services provided, Linux occupies between 40 and 97

percent of the server market share. This is because Linux can assume a

variety of server roles, including the following, and perform them

extremely well:

 File and print server Using the Network File System (NFS), the Common

UNIX Printing System (CUPS), or Samba services, system administrators

can configure Linux to provide network storage and printing of users’ files.

 Web and database server Linux has been widely deployed as a web

server. In fact, the most popular web service currently used on Linux is the

Apache web server combined with MySQL, MariaDB, NoSQL, or

PostgreSQL.

 E-mail server A variety of e-mail services are available for Linux that can

turn your system into an enterprise-class mail server.

 Supercomputer Linux is the preferred operating system for deploying

high-powered supercomputers.

The widespread popularity of Linux as a server is due to a number of

reasons. These include stability, performance, and cost. Red Hat offers the

Red Hat Enterprise Linux (RHEL) Server distribution, which has a proven

track record as an enterprise-class server. SUSE Linux Enterprise Server

(SLES) is also optimized for servers.

Mobile Linux

Linux has nearly taken over the mobile device market in the form of the

Android operating system provided by Google, accounting for almost 50

percent of the smartphone market. Android is so popular for the following

reasons:

 Price It is much cheaper than iOS.

 Performance Android performs extremely well on mobile devices.

 App support A plethora of apps are available for Android devices.

Linux and Virtualization

Virtualization is an aspect of information technology that is gaining a great

deal of momentum in the industry.

Traditionally, one operating system (for example, Linux) is installed on a

computer that has full rein over all the resources in the system, including

the following:

 RAM

 Processor time

 Storage devices

 Network interfaces

Virtualization offers an alternative deployment model. Virtualization

pools multiple operating system instances onto the same computer and

allows them to run concurrently. To do this, virtualization uses a mediator

called a hypervisor to manage access to system resources.

Each operating system instance is installed into a virtual machine and

functions just like a physical host. This allows multiple platforms, including

Windows and Linux, to run at the same time on the same hardware. This is

a huge benefit for software developers and testers, making it much easier to

test how an application in development performs on different platforms.

Several virtualization platforms are available for Linux, including the

following:

 Xen (open source)

 VMware Workstation, Player, ESX, and ESXi (proprietary)

 VirtualBox (open source)

 KVM (open source)

These hypervisors turn the Linux system into a hypervisor that can run

virtual machines.

Linux and Cloud Computing

Virtualization is a key component of cloud computing, where the hardware,

software, and/or network resources are moved offsite and delivered over a

network connection, and even over the Internet.

With cloud computing, a provider on the Internet deploys a new Linux

virtual machine at its site. Customers pay fees to access this virtual server

through their organization’s network connection. The provider assumes all

the responsibility of implementing, maintaining, and securing the server.

This model is referred to Infrastructure as a Service (IaaS).

In addition to IaaS, there are other cloud computing models, including

the following:

 Software as a Service (SaaS) Provides access to software and data

through the cloud. Examples of SaaS include Gmail, Outlook 365, and

Salesforce.

 Platform as a Service (PaaS) Provides access to a full solution suite to

accomplish a computing task, including networking and storage. An

example of PaaS is HTML website hosting.

Many organizations set up Linux and virtualization using a private

cloud, offering on-demand computing resources to other users in the

organization.

Embedded Linux

One benefit of Linux is that it can be optimized down to a small footprint

for IoT (Internet of Things) devices. Linux is ideal for embedding within

intelligent devices such as the following:

 Network routers

 Video game systems

 Smart TVs

 Smartphones and tablets

Linux is customized to provide just essential functions, and unnecessary

elements are removed. The operating system is finally embedded into flash

memory chips within the device.

Chapter Review

This chapter provided you with an overview of the history of the Linux

kernel and structure of Linux-based distributions. It also defined the

differences between Linux distributions and derivatives and explained why

the different distributions exist. Lastly, it described the various

environments in which Linux-based distributions may be found. Here are

some key takeaways from the chapter:

 Linux is an open source monolithic kernel.

 Linus Torvalds first developed the Linux kernel and Linux operating system

in the early 1990s.

 Linux is licensed under the GPL.

 An operating system consists of kernel system software and application

software.

 The kernel layer is the core of the operating system and provides process,

memory, and task management.

 Running passwd -S <username> displays a user’s account status.

 System software is used to manage system resources.

 Application software is used to perform user tasks.

 A Linux-based distribution contains the Linux kernel (possibly modified)

and a selection of operating and application software.

 Linux-based distributions provide a stable environment for embedded

systems and desktop, server, and cloud environments.

Pre-Assessment Test

Prior to reading the rest of the chapters of this book, first complete this pre-

assessment test to identify key areas to focus on as you study for the

CompTIA Linux+ exam.

In this activity, you will be presented with 90 assessment questions that

mirror the type you are likely to see on the real exam. The weighting of

objective domains used in the real exams is approximated in this activity.

To make this experience as realistic and accurate as possible, you should

allocate 90 minutes of uninterrupted time to complete your practice exam.

Turn off your phone, computer, TV, and music player and find a

comfortable place to work. Set a timer for 90 minutes and then begin this

activity. Allowing more than 90 minutes to complete this experience will

yield inaccurate results. Be sure to work through all the questions in this

activity before checking answers. Again, this pre-assessment should mimic

a real testing environment as much as possible. Wait until you have

answered every question before checking the answers.

Once the pre-assessment test is complete, use the “Quick Answer Key”

along with the “In-Depth Answer Explanations” sections to evaluate the

responses. Keep track of the number of questions answered correctly and

compare this number with the table found in the “Analyzing Your Results”

section. This table will give you valuable feedback based on the number of

correct answers given. Finally, compare the questions missed with the

domain maps at the end of this activity to identify areas to focus on as you

study.

Ready? Set the timer for 90 minutes and begin!

Questions

 Which bash configuration files are used for non-login bash shell sessions?

(Choose two.)

 /etc/profile

/etc/bashrc

 ~/.bashrc

 ~/.profile

~/.bash_profile

 Which of the following commands can be used to schedule a job to run at 4

P.M.? (Choose two.)

 at 4PM

at noon+4

 at 16

 at teatime

at "4 o'clock"

 You’ve opened the /var/opt/myapp/settings.txt file in the vi

editor. You need to enter new text into the file. Which key will switch a user

into insert mode from normal or “command” mode?

 i

w

 z

 r

x

 YAML files that are used to configure network cards to use DHCP or set up

static IP addressing can be found where?

 /etc/X11

/etc/dnf

 /etc/yum.repos.d

 /etc/netplan

 To create a new directory in a user’s home directory named MyFiles ,

which command would you use?

 mkdir ~/myfiles

mkdir ~/MyFiles

 md ~/myFiles

 mkdir ~ MyFiles

md ~/MyFiles

 The sealert utility is used to determine that a user cannot access a file.

Which command would aid in troubleshooting by showing access settings?

 ls -s

ls -Z

 ls -l

 restorecon

aa-disable

 Which vi command-line mode commands can be used to save changes to

the current file being edited and close the vi editor? (Choose three.)

 ZZ

:wq

 :q

 :q!

:x

 Which command would you use to change the permissions of a file named

widgets.odt such that the file owner can edit the file but no other

users on the system will be allowed to view or modify it?

 chmod 660 widgets.odt

chmod 640 widgets.odt

 chmod 777 widgets.odt

 chmod 600 widgets.odt

 Which command would you use to change the permissions of a file named

projectx.odt such that the file owner can edit the file, users who are

members of the group that owns the file can view and edit it, and users who

are not owners and don’t belong to the owning group cannot view or

modify it?

 chmod 660 projectx.odt

chmod 640 projectx.odt

 chmod 777 projectx.odt

 chmod 644 projectx.odt

 Which usermod command options must be used to add user accounts as

members of a secondary group? (Choose two.)

 –a

–s

 –g

 –p

–G

 Which control structure processes over and over as long as a specified

condition evaluates to false ?

 while

until

 for

 case

 For designing the implementation of a new Linux server in the company’s

network, the server will function as an internal file and print server for the

organization. Employees will save their work-related files in shared storage

locations on the server, and print jobs for shared printers will be managed

by the server as well. What services should be included in the

specifications? (Choose two.)

 Apache

MySQL

 Samba

 Telnet

Pure-FTP

CUPS

 Which process takes over and kills processes that use too much memory

because they score too high under this process’s monitoring system?

 BOMB

BOM

 KaBOOM

 BOOM

OOM

 Which tools can be used to check for open network ports? (Choose two.)

 nmap

lsof

 pwconv

 ssh

cpio

 To insert a new kernel module into a Linux system that has no

dependencies, which tool is best to use to utilize the module?

 dmesg

modinfo

 insmod

 depmod

lsmod

 Which of the following commands is used to find the domain’s mail server?

 dig

ping

 traceroute

 route

 Which command updates every few seconds, displaying the routers that

packets use to reach their destination?

 mtr

traceroute

 tracert

 iftop

top

 When using local authentication on a Linux system, which file contains the

passwords for the user accounts?

 /etc/passwd

/etc/group

 /etc/gshadow

 /etc/shadow

 Consider the following entry from the /etc/passwd file:

algreer:x:1001:100:Albert

Greer:/home/algreer:/bin/bash

What user ID (UID) has been assigned to this user account?

 algreer

1001

 100

 Albert Greer

 Consider the following entry from the /etc/shadow file:

kmorgan:$2a$05$KL1DbTBqpSEMiL.2FoI3ue4bdyR.eL6GMKs

7MU6.nZl5SCC7/REUS:15043:1:60:7:5::

In how many days will this account be disabled after the user’s password

has expired?

 One day

Seven days

 Five days

 Null value (never)

 Which of the following contains files that populate new users’ home

directories when created with useradd ?

 /etc/login.defs

/etc/default/useradd

 /etc/skel

 /etc/default/grub

 You need to create a new account for a user named Ian Mausi on a Linux

system and specify a username of imausi , a full name of Ian Mausi, a

default shell of /bin/bash , and that a home directory be created. Which

command will do this?

 useradd –c "Ian Mausi" –m –s "/bin/bash" imausi

useradd –c "Ian Mausi" –m –s "/bin/bash" –u imausi

 usermod –c "Ian Mausi" –m –s "/bin/bash" imausi

 useradd –c "Ian Mausi" –s "/bin/bash" imausi

 Which file keeps a list of intentionally untracked files that git should

ignore?

 .gitnot

gitnot

 .gitignore

 .git

 Command substitution, which allows a command to run within a command,

is performed with which operators? (Choose two.)

 ` `

$()

 ' '

 " "

${ }

 An administrator runs mount /dev/sdb2 /external and realizes

they have made a mistake because a filesystem was already mounted to

/external . What happened to the files that were initially mounted onto

/external ?

 The files are destroyed and can only be recovered from backup tape.

Linux does not allow for a filesystem to be mounted onto another.

 The files are temporarily merged with the new filesystem.

 Nothing. When the administrator runs umount /dev/sdb2 , the files

will reappear unharmed.

 A script that requires the end user to enter the name of their supervisor will

use which of the following lines to input the user’s response into a variable

named SUP ?

 read SUP

input SUP

 prompt SUP

 query SUP

 When a new user attempts to run a script while in their home directory

using the ./runme.sh command from the shell prompt, they see the

following error:

bash: ./runme.sh: Permission denied .

Which resolution will fix this issue?

 Copy the file to the ~/bin directory.

Add the home directory to the PATH environment variable.

 Enter chmod u+x runme.sh at the shell prompt.

 Change the sha-bang line of the script to #!/bin/sh .

 Which of the following will make for the fastest restore, and fewest number

of tapes to restore, assuming the system fails shortly after the Friday backup

completes? (Key: F=Full, I=Incremental, D=Differential.)

 Mon-F1, Tue-D1, Wed-I1, Thu-D2, Fri-F2

Mon-F1, Tue-D1, Wed-I1, Thu-D2, Fri-I2

 Mon-F1, Tue-D1, Wed-D2, Thu-D3, Fri-D4

 Mon-F1, Tue-I1, Wed-I2, Thu-I3, Fri-I4

 Which of the following commands can convert a shell variable to an

environment variable?

 env

export

 set

 chmod

 Which command would an administrator run to disable the loading of the

unneeded kernel module tg3 ? (Choose two.)

 echo "blacklist tg3" >

/etc/modprobe.d/network.conf

echo "blacklist tg3" >>

/etc/modprobe.d/blacklist.conf

 echo "blacklist tg3" >>

/etc/modprobe.d/network.conf

 echo "blacklist tg3" >

/etc/modprobe.d/blacklist.conf

echo "blacklist tg3" <<

/etc/modprobe.d/blacklist.conf

 Which command can uncover a remote user’s login name and password

when they connect using Telnet or TFP?

 dig

nslookup

 tcpdump

 ip

 Which protocols encrypt the network traffic? (Choose two.)

 SSH

FTP

 Telnet

 HTTPS

Finger

 Which of the following is not a single sign-on system?

 RADIUS

Kerberos

 TACACS+

 Circumference

LDAP

 Consider the following IP address: 172.17.8.10/22. Which subnet mask is

assigned to this address?

 255.255.252.0

255.255.0.0

 255.255.255.0

 255.255.255.252

 Which command would assign the ens32 interface an IP address of

172.17.8.1 with a subnet mask of 255.255.0.0 and a broadcast address of

172.17.255.255?

 ip addr set ens32 172.17.8.1/255.255.0.0

bcast 172.17.255.255

ip addr 172.17.8.1/255.255.0.0

broadcast 172.17.255.255 dev ens32

 ip addr set 172.17.8.1/255.255.0.0

broadcast 172.17.255.255 dev ens32

 ip addr add 172.17.8.1/255.255.0.0

broadcast 172.17.255.255 dev ens32

 Which directive in /etc/sysconfig/network/ifcfg-eth0 is

used to specify whether the interface is automatically enabled when the

system is booted?

 STARTMODE

BOOTPROTO

 IPADDR

 USERCONTROL

 Which system keeps one NIC sleeping and awakens when another NIC

fails?

 Active-passive

Active-active

 Load balancing

 Aggregation

 For security reasons, a Linux system should resolve hostnames using the

DNS server before trying to resolve them using the /etc/hosts file.

Which file is reconfigured to change the name resolver order?

 /etc/resolv.conf

/etc/sysconfig/network/ifcfg-eth0

 /etc/nsswitch.conf

 /etc/sysconfig/services

 The /etc/sudoers file on your Linux system is configured by default

such that users must supply their password when using sudo instead of

the root password. Which commands are best used to modify the

/etc/sudoers file? (Choose two.)

 gedit

vi

 notepad

 sudoedit

visudo

 Which setting made in the proper file in the /etc/pam.d/ directory

tracks login attempts and locks out users after multiple attempts?

 pam_access.so

pam_loginuid.so

 pam_limits.so

 pam_tally2.so

 To secure the sshd service running on a Linux system from hackers, it is

decided to configure it to listen for SSH requests on a port other than the

default of 22 . Which directive in the /etc/ssh/sshd_config file

can do this?

 Port

BindAddress

 Protocol

 Tunnel

 You want to write the stdout from the ps command to a file named

myprocesses in the /tmp directory without overwriting the existing

contents of that file. Which command will do this?

 ps 3 < /tmp/myprocesses

ps 1 > /tmp/myprocesses

 ps 2 <> /tmp/myprocesses

 ps 4 >> /tmp/myprocesses

 Which option to the passwd command is the same as --status that

lists a user’s password expiration parameters?

 --STATUS

-s

 -S

 --ss

 An administrator must configure the GRUB2 bootloader such that it will

boot the first operating system in the boot menu by default unless an end

user manually selects an operating system within the timeout period. Which

file must the administrator modify to create this setting?

 /etc/default/grub

/boot/grub2/grub.cfg

 /boot/grub2

 /etc/grub.d/10_linux

 Which commands will switch a Linux system from a graphical environment

to a multiuser text-based environment? (Choose two.)

 systemctl isolate runlevel3.target

systemctl isolate rescue.target

 systemctl isolate multi-user.target

 systemctl isolate runlevel5.target

systemctl isolate graphical.target

 The system administrator just added a third SATA hard disk drive to the

Linux system and needs to create a GPT partition on it. Which command

should they use to do this?

 fdisk /dev/sdb

fdisk /dev/sdc

 fdisk /dev/sd2

 fdisk /dev/sd3

 On a Linux system with 16GB of RAM, two additional SATA hard disks

(/dev/sdb and /dev/sdc) are added to the system and a partition is

created on each one. The partitions are defined as LVM physical volumes.

Which command is run to add both physical volumes to a new volume

group named DATA ?

 lvscan –v

vgcreate DATA /dev/sdb1 /dev/sdc1

 pvcreate /dev/sdb1

 lvcreate -L 700G -n research DATA

pvcreate /dev/sdc1

 Which are true about logical volumes? (Choose three.)

 Can create and delete logical volumes

Can adjust sound levels symmetrically

 Can create snapshots

 Can adjust sound levels asymmetrically

Can change sizes of logical volumes

 A new Linux system was installed about a week ago. Three days ago, an

administrative user compiled and installed a new application from source

code. Now, the Ethernet interface in the system sporadically goes offline.

Which command does the administrator run to see the boot messages

generated by the system when it was in a pristine state shortly after being

installed?

 journalctl –b 2

logger –p 2

 journalctl –b

 journalctl –b -2

 The following content is listed in which file?

 /etc/securetty

/dev/tty

 /etc/yum.conf

 /etc/ld.so.conf

 After installing GIT, which two configuration properties must be defined

before issuing a commit?

 Username and e-mail address

MAC address and project name

 IP address and MAC address

 Username and password

 Which of the following is not a Linux desktop environment?

 Gnome

VNC

 Unity

 Cinnamon

 Which of the following modifies the linux parameter to override the

default boot target so that an administrator can change a forgotten root

password?

 init=1

systemd.unit=rescue.target

 systemd.unit=emergency.target

 init=S

 Which of the following allows the network administrator to add a default

gateway of 10.5.3.1 ? (Choose two.)

 route add gateway 10.5.3.1

ip route add default via 10.5.3.1

 ip route add default 10.5.3.1

 route add default gw 10.5.3.1

route add default 10.5.3.1

 Consider the following routing table:

Given this routing table, why does the following command fail?

route add default gw 10.5.3.1

 A default route is already defined.

Default routes must be defined on static networks only.

 Because there is no route to 10.5.3.1.

 The genmask value must be 255.0.0.0.

 The network administrator modified a configuration file to utilize a tier 1

timeserver. Since making the change, time updates via NTP are no longer

occurring. What most likely has occurred?

 Port 123 is blocked on the firewall.

The network administrator forgot to reboot the system.

 The network administrator improperly ran the timedatectl command.

 The feature is not available on Red Hat strains of Linux and must be

converted to a Debian strain.

 Amy attempts to update the file /etc/apt/sources.list and gets

the error message “Operation not permitted.” Which command does she

need to run to write content to /etc/apt/sources.list ?

 chattr -i /etc/apt/sources.list

chattr -I /etc/apt/sources.list

 chmod 755 /etc/apt/sources.list

 setfacl -m m:rw /etc/apt/sources.list

 Which of the following is not an initialization system used on Linux?

 systemd

Upstart

 SysVinit

 sysinit

 Which of the following describes the columns of the /etc/fstab file

best?

 Device, mount point, filesystem type, options, fsck order, dump option

Device, mount point, filesystem type, options, dump option, fsck order

 Device, mount point, options, filesystem type, dump option, fsck order

 Mount point, device, filesystem type, options, dump option, fsck order

 Which are not journaled filesystems? (Choose two)

 ext2

ext3

 isofs

 xfs

ntfs

 Which is not a method that results in an ext3 type filesystem?

 mke2fs -j /dev/sda2

mkfs.ext3 /dev/sdb3

 tune2fs -t ext3 /dev/sdd4

 mkfs -t ext3 /dev/sdc7

tune2fs -j /dev/sde8

 Which command shows who is logged in and which commands they are

running?

 whoami

whom

 who

 w

id

 Running the df command, the administrator sees they have 20 percent of

disk space available, but running df -i they see there are no inodes left.

Why cannot they not add new files?

 Remove files to free up file handles

Run mkfs.ext3 to change inode size

 Increase the block size to > 4KiB blocks

 Resize the filesystem

 Which command deletes the user account and removes the user’s files from

their home directory plus their e-mail?

 usermod -r

useradd -d

 userdel -d

 userdel -r

usermod -d

 Which commands conduct password expiration for users? (Choose three.)

 usermod

chage

 passwd

 password

shadow

 Which of the following is the local system time zone configuration file?

 /etc/local/time

/lib/localtime

 /usr/lib/localtime

 /etc/localtime

/usr/bin/localtime

 Which option to the localectl command displays the current locale?

 list-locales

status

 -l

 -s

 Which environment variable will override all LC_* variables?

 LC_ALL

LC_NAME

 LC_CTYPE

 LANG

 Running ls -l displays the following output:

When username montrie executes the runme command, what EUID

will it run at?

 montrie

todd

 root

 manf

 So that new directories have a default permission of 750 and regular files

have a default permission of 640, what must the unmask ? (Choose two.)

 026

0026

 027

 0027

0036

036

 User Jeongeun gets an error message that she cannot create a new file

because there is no more disk space; however, she is well below her

quota use. What is the next command she runs to view total disk space

utilization?

 quota

df -i

 du -sh

 df -h

 User Iohn notices that system performance is slowing and suspects that

memory shortages are the issue. He cannot add additional memory, so as a

quick fix decides to add a swapfile to use as additional swap space. After

creating the swapfile and setting up the Linux swap area, he notices no

change in performance. What command did he most likely forget to run?

 swapon

swapoff

 mkswap

 mount

 User Quiñonez discovers that she can get better disk drive performance by

converting from bfq or noop to mq-deadline . What command

should she run for proper conversion to mq-deadline ?

 cat mq-deadline < /sys/block/sda/queue/scheduler

cat mq-deadlne > /sys/block/sda/queue/scheduler

 echo mq-deadlinew > /sys/block/sda/queue/scheduler

 echo mq-deadline < /sys/block/sda/queue/scheduler

 User Elimu is working on a bash script. The script contains this case

statement:

Which command should Elimu place into the blank?

 at

in

 of

 if

 User Wade is working on a bash script. The script contains this for

statement:

Which command should Wade place into the blank?

 end

rof

 od

 done

 A server administrator created 20 identical Linux instances. When testing

network functionally of each instance, the admin notices the cloned devices

have identical hostnames. What should the admin do on each device to

change the hostnames of the devices permanently?

 Run the host command

Edit the /etc/dhcp/dhclient.conf file

 Run the nslookup command

 Edit the /etc/sysconfig/network file

 User Walter needs to examine the performance of his RAID array. He is

learning how to use mdadm but is unsure as to which option to mdadm

will show negative issues with the system (for example, disk failures).

Which of the following are the best ways for Walter to accomplish this?

(Choose three.)

 mdadm --build

mdadm --follow

 mdadm -F

 mdadm --monitor

 Users Landon and Lonnie monitor the virtual machines. One of the

applications they use requires telnet , which unfortunately uses the

same escape string ^] . Which option to virsh allows them to change

the escape string to ^[?

 --debug

--chstr

 --esc

 --escape

 System administrators Laeia and Liara work side by side examining

accounting results of disk drive performance. Laeia believes that poor

performance is related to aging hard drives, and she consults with Liara as

to the next steps. Liara knows that exact command to run to check for bad

blocks. She recommends which of the following?

 blockcheck

badblocks

 kill

 bbcheck

 Sorana desires to display memory and swap utilization using the free

command. Unlike iostat , sar , and others, free does not update

periodically by default. Which command can she run with free to

automatically display updates every two seconds, refreshing the screen

every time?

 period

watch

 free

 twosec

 User Ugo decides that he wants new files and directories below the

directory work to automatically have the same group permission as

work . Which command can Ugo run to do this?

 chmod g+s work

chmod +a work

 chmod g=w work

 chmod g=rw work

 Zhang is a network administrator who needs to open the firewall to allow

web access. Which of the following would do this for her?

 firewall-cmd --zone=public --allow=http

firewall-cmd --zone=public --add-service=http

 firewall-cmd --zone=public --add-service=web

 firewall-cmd --zone=public --add=http

 Henri is a network administrator who is required to open new ports for

NTP and HTTPd . He needs to display the current firewall settings using

iptables . Which of the following would do this for him?

 iptables -d

iptables -s

 iptables -L

 iptables -F

 Petra is a system administrator working on a Linux system running

SysVinit . She runs the following as root :

Which of the following would she run to enable auditd to start at runs

state 3 or 5 upon reboot?

 chkconfig --level 35 auditd start

chkconfig --level 35 auditd on

 chkconfig --level 35 start auditd

 chkconfig --level 35 on auditd

 Milos is a storage administrator and notices disk space is running out on

one of the logical volumes. Before using lvextend to enlarge the

volume, what must he do first?

 Know which volume group device to extend.

Reboot the system.

 Restart the logical volume service.

 Restart meta-device management.

 Ushna is a cloud administrator who would like to orchestrate the setup of

500 Centos Linux servers. Of the tools listed, which is the one she would

not choose as part of the configuration?

 Cloud-init

Orchestrate

 Anaconda

 Kickstart

 Thanasi, a cloud engineer, is updating files for orchestration. The following

is some sample content that he is editing with /bin/vi :

This is most likely what type of file?

 SAML

XML

 JSON

 YAML

 Teliana, a cloud engineer, is updating files for orchestration. The following

is some sample content that she is editing with /bin/vi :

This is most likely what type of file?

 SAML

XML

 JSON

 YAML

 System administrator Juan has just enabled SELinux and is finding it very

difficult to work with. He is just testing the system and does not require it to

be fully functional. What should he run that will simply warn of any

SELinux offenses?

 setenforce permissive

setenforce enforcing

 setenforce disabled

 setenforce warning

 System administrator Katerina is running a foreground job named

windsim and she would like to stop it temporarily and have it continue

later. What key sequence does she run to stop the job?

 Ctrl-C

Ctrl-Z

 Ctrl-\

 Ctrl-S

Quick Answer Key

 B, C

 A, D

 A

 D

 B

 B

 A, B, E

 D

 A

 A, E

 B

 C, F

 E

 A, B

 C

 A

 A

 D

 B

 C

 C

 A

 C

 A, B

 D

 A

 C

 A

 B

 B, C

 C

 A, D

 D

 A

 D

 A

 A

 C

 D, E

 D

 A

 D

 C

 A

 A, C

 B

 B

 A, C, E

 A

 A

 A

 B

 C

 B, D

 C

 A

 A

 D

 B

 A, C

 C

 D

 A

 D

 A, B, C

 D

 B

 A

 B

 C, D

 D

 A

 C

 B

 D

 B

 B, C, D

 D

 B

 B

 A

 B

 C

 B

 A

 B

 D

 C

 A

 B

In-Depth Answer Explanations

 B and C are correct. Both /etc/bashrc and ~/.bashrc are used

to configure non-login shell sessions, although other files may be used on

some distributions.

 A, D, and E are incorrect. The /etc/profile , ~/.profile , and

~/.bash_profile files are used to configure login shell sessions.

(Domain 1. System Management)

 A and D are correct. Users can run at 4PM , at 16:00 , or at

teatime to schedule a job to run at 4 P.M.

 B, C, and E are incorrect. These other forms of running at will return

a syntax error message. (Domain 3. Scripting, Containers, and Automation)

 A is correct. Press the Insert or i key to enter insert mode in the

vi editor.

 B, C, D, and E are incorrect. The Esc key is used to return to normal

(command) mode from insert mode in the vi editor. The a key is used to

append text after the cursor. The o key opens a new line below before

allowing for text to be inserted. The r key is used to replace a single

character, and the x key is used by the vi editor to delete a single

character. The w and z keys are non-functional in normal mode. (Domain

1. System Management)

 D is correct. Save a network configuration inside the

/etc/netplan/config.yaml file to automate the configuration at

boot time.

 A, B, and C are incorrect. The /etc/X11 file is for the X-Window

GUI setups, and the /etc/dnf and /etc/yum.repos.d files point

to software installation repositories. (Domain 1. System Management)

 B is correct. The mkdir command is used to create new directories in

the filesystem, where ~ stands for the user’s home directory (in this case,

/home/user/Myfiles or ~/MyFiles).

 A is incorrect because it uses the wrong case for the directory name. C

and E are incorrect because they use the incorrect command for creating

new directories (md). D is incorrect because it omits the / character after

the tilde. (Domain 1. System Management)

 B is correct. Running ls -Z will allow the user to see the current

SELinux settings and determine whether or not they need to be changed.

 A, C, D, and E are incorrect. Neither the ls -s nor ls -l

command will list any SELinux file information, instead only showing file

sizes and a “long listing,” respectively. The restorecon command fixes

and repairs SELinux labels. The aa-disable command is used to

disable AppArmor, not SELinux. (Domain 2. Security)

 A, B, and E are correct. The ZZ , :x , and :wq commands will save

any changes to the current file and then close the vi editor.

 C and D are incorrect. The :q command will close the current file and

exit the editor without saving changes. The :q! command will discard

any changes made to the current file, close it, and then exit the editor.

(Domain 1. System Management)

 D is correct. The chmod 600 widgets.odt command grants the

owner rw- permissions but takes away permissions from all other users.

 A, B, and C are incorrect. A is incorrect because it allows the file owner

to edit the file, but also grants read and write access to the group. B is

incorrect because it grants the group the read (r) permission. C is

incorrect because it grants the owner, group, and others all permissions to

the file. (Domain 2. Security)

 A is correct. The chmod 660 projectx.odt command grants the

owner rw- permissions, the group rw- permissions, and others ---

permissions.

 B, C, and D are incorrect. B is incorrect because it fails to grant the

group the write (w) permission. C is incorrect because it grants the owner,

group, and others all permissions to the file. D is incorrect because it fails to

grant the group the write (w) permission and it grants others read (r--)

permission to the file. (Domain 2. Security)

 A and E are correct. The usermod –aG command adds the users you

specify as members of the specified group(s).

 B, C, and D are incorrect. The –s option is used by the usermod

command to define the “login shell” that the user will run. The –g option

assigns the user’s primary group. The –p option changes the password

assigned to the user. (Domain 1. System Management)

 B is correct. An until loop runs over and over as long as the

condition is false . As soon as the condition is true , it stops.

 A, C, and D are incorrect. A while loop executes over and over until

a specified condition is no longer true . A for loop processes a specific

number of times. A case statement is not a looping structure. (Domain 3.

Scripting, Containers, and Automation)

 C and F are correct. The Samba service provides file sharing. CUPS is

used to manage printing.

 A, B, D, and E are incorrect. The Apache web server is frequently

implemented on Linux in conjunction with the MySQL database server to

develop web-based applications. Telnet is an older service that was

formerly used for remote access. Pure-FTP provides an FTP service.

(Domain 1. System Management)

 E is correct. The Out of Memory Killer watches for processes that use

too much memory and selects them for killing when the system has a

serious memory shortage.

 A, B, C, and D are incorrect and are nonexistent Linux tools. (Domain

4. Troubleshooting)

 A and B are correct. Either nmap -sT -p 1-1024 10.0.0.* is

used to scan for open ports between 1 and 1024 or lsof -i is used to

scan for open network ports.

 C, D, and E are incorrect. The pwconv command is used to create the

/etc/shadow file from the /etc/passwd file. The ssh command

is used to make secure remote login connections. The cpio command is

used to create tape backups. (Domain 4. Troubleshooting)

 C is correct. Use insmod to insert a module.

 A, B, D, and E are incorrect. The dmesg program shows hardware

found during bootup. The modinfo command provides the user info

about a module. The depmod command looks for module dependencies

and updates the modules.dep file. The lsmod command shows a list

of currently installed modules. (Domain 1. System Management)

 A is correct. A system administrator could run dig

jordanteam.com MX and list the location of the mail server.

 B, C, and D are incorrect. The ping command is used to test

networks, and traceroute will list the routers used for a packet to

reach its destination. The route command is used to define or display the

default gateway. (Domain 1. System Management)

 A is correct. Use the mtr command to visualize the routes a packet

takes to reach its destination.

 B, C, D, and E are incorrect. The traceroute command is similar

to mtr , but it is entered at the command line and does not operate

periodically. The tracert command is the same as traceroute but

works on the Windows operating system. The iftop command updates

periodically and displays network traffic. The top command updates

periodically and shows process activity. (Domain 4. Troubleshooting)

 D is correct. The /etc/shadow file contains the encrypted

passwords for user accounts.

 A, B, and C are incorrect. The /etc/passwd file contains the user

accounts and user IDs. The /etc/group file is used for local group

definitions. The /etc/gshadow file contains passwords for the groups.

(Domain 2. Security)

 B is correct. The third field in each user entry in /etc/passwd

specifies the user’s ID number (UID). In this case, it’s 1001 .

 A, C, and D are incorrect. A is incorrect because it specifies the

username. C is incorrect because it specifies the group ID (GID) of the

user’s primary group. D is incorrect because it specifies the user’s full

name. (Domain 1. System Management)

 C is correct. The seventh field in each record in /etc/shadow

specifies the number of days to wait after a password has expired to disable

the account.

 A, B, and D are incorrect. A is incorrect because it specifies the

minimum number of days (one) required before a password can be changed.

B is incorrect because it specifies the number of days prior to password

expiration before the user will be warned of the pending expiration. D is

incorrect because it is assigned to the eighth field, which specifies the

number of days since January 1, 1970, after which the account will be

disabled. (Domain 2. Security)

 C is correct. The /etc/skel directory contains files (usually startup

scripts, like .bashrc) that populate a new user’s home directory when

created with useradd .

 A, B, and D are incorrect. The /etc/login.defs file defines the

locations of a new user’s mail directories, etc. The

/etc/default/useradd file contains defaults used by the

useradd utility (for example, user ID and default shell). The

/etc/default/grub file contains booting defaults. (Domain 1.

System Management)

 A is correct. The useradd –c "Ian Mausi" –m –s

"/bin/bash" imausi command creates a new user account for a user

named Ian Mausi with a username of imausi , a full name of Ian Mausi, a

default shell of /bin/bash , and a home directory.

 B, C, and D are incorrect. B is incorrect because it uses incorrect syntax

for the useradd command, where –u is followed by a user ID number.

C is incorrect because it uses an incorrect command (usermod). D is

incorrect because it omits the –m option, which is required to create a

home directory. (Domain 1. System Management)

 C is correct. The . gitignore file keeps a list of files that should be

ignored by the git command.

 A, B, and D are incorrect. A and B are incorrect because there are no

such files as .gitnot or gitnot . D is incorrect because .git is a

directory that contains the repository for the project. (Domain 3. Scripting,

Containers, and Automation)

 A and B are correct. Users can use the backticks (for example, echo

Today is `date`) or a dollar sign and parentheses (for example,

echo Today is $(date)). The output of the date command will

be the input to the echo command.

 C, D, and E are incorrect. The single quotes make all characters literal.

The double quotes make all characters literal except for the \, $, and `

(backtick), with some exceptions, such as !, @, and *, that are outside the

scope of the exam. The dollar sign with curly braces, ${ }, are used to

dereference a variable. (Domain 3. Scripting, Containers, and Automation)

 D is correct. When the administrator runs umount /dev/sdb2 , the

files will reappear unharmed.

 A, B, and C are incorrect. The files are not destroyed, mounted to other

filesystems, or temporarily merged. (Domain 1. System Management)

 A is correct. The read command is used to pause the script and

prompt the user to provide some type of input, which is assigned to the

specified variable.

 B, C, and D are incorrect. The input , prompt , and query

commands cannot be used to read user input, and are distractors. (Domain

3. Scripting, Containers, and Automation)

 C is correct. The error shown is caused by not having the execute

permission set for the user trying to run the script. The chmod u+x

runme.sh command will allow the user who owns the file to run it.

 A, B, and D are incorrect. A and B are incorrect because they resolve

path-related problems, which are not an issue in this scenario. D is incorrect

because it changes the command interpreter to the /bin/sh (Bourne)

shell, which is not necessary in this scenario. (Domain 3. Scripting,

Containers, and Automation)

 A is correct. If the system fails after the backup completes on Friday, the

only tape required to fully restore would be F-2 (Full backup, Number 2

made on Friday).

 B, C, and D are incorrect. B would require three tapes to recover in this

order: Full-1, Differential 2, and Incremental 2. C would require two tapes

to recover in this order: Full 1 and Differential 4. D would require all tapes

to recover in the order of F-1, I-1, I-2, I-3, and I-4. (Domain 2. Security)

 B is correct. Running export VAR1 will convert VAR1 from a shell

variable to an environment variable.

 A, C, and D are incorrect. The env command will display all the

environment variables defined. The set command will display all of the

shell variables defined. The chmod command can change read, write, and

execute permissions on files. (Domain 3. Scripting, Containers, and

Automation)

 B and C are correct. When an administrator wants to safely disable a

driver, they add it to the blacklist using >> .

 A, D, and E are incorrect. A and D are incorrect because they overwrite

the file with the new content using > , which will disable other driver

features unintentionally. E is incorrect because << is used for heredocs.

(Domain 2. Security)

 C is correct. The tcpdump command monitors network traffic and can

display unencrypted login names and passwords.

 A, B, and D are incorrect. The dig and nslookup commands list

the IP addresses that domain names belong to. The ip command is used to

define and set up network devices. (Domain 4. Troubleshooting)

 A and D are correct. SSH and HTTPS encrypt traffic traveling along

the network.

 B, C, and E are incorrect. FTP, Telnet, and Finger communicate across

the network using unencrypted data, and they should be disabled for best

security. (Domain 2. Security)

 D is correct. There is no single sign-on (SSO) system referred to as

Circumference.

 A, B, C, and E are incorrect. All of these are single sign-on systems that

allow a user to use a single digital identity across multiple domains.

(Domain 2. Security)

 A is correct. The /22 prefix length indicates the first two octets of the

subnet mask (16 bits) are populated, plus 6 additional bits in the third octet.

 B, C, and D are incorrect. The prefix length for 255.255.0.0 would be

/16. The prefix length for 255.255.255.0 would be /24. The prefix length for

255.255.255.252 would be /30. (Domain 4. Troubleshooting)

 D is correct. This command will assign the ens32 interface an IP

address of 172.17.8.1, with a subnet mask of 255.255.0.0 and a broadcast

address of 172.17.255.255.

 A, B and C are incorrect. They use incorrect parameters for setting the

subnet mask and broadcast address. The set feature is used with ip

link set ens0 up , for example. (Domain 4. Troubleshooting)

 A is correct. STARTMODE determines whether the interface is started

automatically at system boot or must be manually enabled.

 B, C, and D are incorrect. The BOOTPROTO parameter can be set to a

value of STATIC to use static IP address assignments or to DHCP to

configure dynamic IP addressing. IPADDR assigns an IP address to the

interface but only works if BOOTPROTO is set to STATIC .

USERCONTROL determines whether standard user accounts are allowed to

manage the interface. (Domain 4. Troubleshooting)

 A is correct. Active-passive clusters reserve a passive NIC that becomes

active when another NIC fails.

 B, C, and D are incorrect. Active-active clusters keep all NICs active

and running and are designed primarily for load balancing and load

aggregation. Load balancing is used to configure the system’s hostname.

(Domain 1. System Management)

 C is correct. Use /etc/nsswitch.conf (name service switch) to

define the order in which services will be used for name resolution.

 A, B, and D are incorrect. A is incorrect because it is used to configure

the IP address of the DNS server but does not configure the name service

order. B is incorrect because it is used to configure IP addressing

information but does not contain name resolution information. D is

incorrect because it is used to configure how services will behave after they

are updated. (Domain 1. System Management)

 D and E are correct. Use visudo or sudoedit /etc/sudoers

to modify the /etc/sudoers file securely.

 A, B, and C are incorrect. The gedit and vi commands could be

used to edit /etc/sudoers as root , but using them is insecure

because multiple users may be editing the file simultaneously, causing

changes to be lost. The notepad command is an editor used with

Microsoft Windows. (Domain 2. Security)

 D is correct. Defining pam_tally2.so within proper files under

/etc/pam.d/ can lock an account after three improper login attempts,

for example.

 A, B, and C are incorrect. Use pam_access.so for auditing and

logging of access control. Use pam_loginuid.so to assist in login

auditing as well. Use pam_limits.so to take advantage of ulimit

features. (Domain 2. Security)

 A is correct. The Port directive specifies the port on which the sshd

daemon will listen for SSH requests.

 B, C, and D are incorrect. The BindAddress directive is used to

specify the address on the local machine to be used as the source address of

the connection. The Protocol directive specifies the protocol versions

SSH should support. The Tunnel directive is used to set up forwarding

between the SSH client and the SSH server. (Domain 2. Security)

 D is correct. The ps 4 >> /tmp/myprocesses command

appends the stdout from the ps command to a file named

myprocesses in the /tmp directory.

 A, B, and C are incorrect. A is incorrect because < attempts to use

/tmp/myprocesses as stdin to the ps command. B is incorrect

because > will redirect stdout to the file /tmp/myprocesses and

overwrite any data within the file. C is incorrect because, in some versions

of bash, <> stands for read-write and would overwrite any data within

/tmp/myprocesses . (Domain 1. System Management)

 C is correct. Running passwd -S lists the user’s name and fields

related to password aging.

 A, B, and D are incorrect. Since Linux is a case-sensitive operating

system, --STATUS is not the same as --status . --ss and -s are

not options for the passwd command, and result in an error message if

used. (Domain 1. System Management)

 A is correct. The GRUB_DEFAULT=0 directive is defined within

/etc/default/grub and causes GRUB2 to use the first menu entry

by default, regardless of which operating system was selected on the last

boot.

 B, C, and D are incorrect. The /boot/grub2/grub.cfg file is

generated from /etc/default/grub . /boot/grub2 is a directory,

not a file. Users would modify /etc/grub.d/40_custom to add

customizations. (Domain 1. System Management)

 A and C are correct. Both systemctl isolate

runlevel3.target and systemctl isolate multi-

user.target are used to switch the system into a text-based, multiuser

environment comparable to runlevel 3 on an init-based system.

 B, D, and E are incorrect. The systemctl isolate

rescue.target command switches the system to a rescue environment

equivalent to runlevel 1. To switch to the systemd equivalent of runlevel

5, enter either systemctl isolate runlevel5.target or

systemctl isolate graphical.target . (Domain 1. System

Management)

 B is correct. To create a GPT partition on the third SATA hard disk in a

Linux system, first switch to the root user and enter fdisk /dev/sdc

at the shell prompt.

 A, C, and D are incorrect. A is incorrect because fdisk /dev/sdb

represents the second SATA hard drive. C and D are incorrect because they

are improper hard-drive representation syntax. (Domain 1. System

Management)

 B is correct. Use the vgcreate command to define a new volume

group and assign physical partitions to it (/dev/sdb1 and

/dev/sdc1 in this case). The vgcreate command is used after

defining the physical volumes with pvcreate /dev/sdb1

/dev/sdc1 .

 A, C, D, and E are incorrect. The lvscan command is used to view

the logical volumes defined on the system. The pvcreate command is

used to define a partition (or even an entire disk) as an LVM physical

volume. The lvcreate command is used to define logical volumes on

the system. (Domain 4. Troubleshooting)

 A, C, and E are correct. Logical volumes can be used to create and

delete logical volumes, take snapshots, and increase and decrease the sizes

of logical volumes.

 B and D are incorrect. Logical volume management has nothing to do

with Linux audio capabilities. (Domain 4. Troubleshooting)

 A is correct. The journalctl –b 2 command displays messages

created during the second boot event found at the beginning of the journal.

This should contain boot messages from the system’s pristine state required

by the scenario.

 B, C, and D are incorrect. The logger command is used to send test

log events to the logging daemon. The journalctl –b command

displays boot messages that were logged in the most recent boot event. The

journalctl –b -2 command displays system messages that were

logged two boot events ago. (Domain 2. Security)

 A is correct. The content shown is from the /etc/securetty file,

which lists the terminals from which root can log in.

 B, C, and D are incorrect. B is incorrect because the /dev/tty file is

a character device driver. C is incorrect because /etc/yum.conf is the

configuration file for YUM repositories. D is incorrect because

/etc/ld.so.conf is the configuration file for the location of

dynamically linked libraries. (Domain 2. Security)

 A is correct. For GIT to work properly, every commit must relate to

some username and e-mail address so that all of the co-contributors can

keep track of the changes.

 B, C, and D are incorrect. Co-contributor communications do not

require a MAC address, IP address, project name, or password. (Domain 3.

Scripting, Containers, and Automation)

 B is correct. VNC (Virtual Network Computing) is not a Linux desktop

environment; it is a utility for remote desktop computer access.

 A, C, and D are incorrect. Gnome, Unity, and Cinnamon are all Linux

desktop environments, providing login screens and varied desktop

appearances. Gnome is the default environment for several distributions,

including openSUSE and Fedora. Unity is a popular desktop environment

for Ubuntu Linux. Cinnamon is popular on Linux Mint. (Domain 3.

Scripting, Containers, and Automation)

EXAM TIP Knowledge of default desktop environments is not a

requirement for the CompTIA Linux+ exam

 C is correct. While booting a system, the system administrator hits the

Esc key when the GRUB menu appears, presses E to edit, scrolls down

to the linux line and enters at the end of the line

systemd.unit=emergency.target . The admin then presses the

F10 key to enter emergency mode and begins the process of removing

and replacing the root password.

 A, B, and D are incorrect. A and D are incorrect for systemd

systems, but would enter single-user mode on SysVinit systems when

entered at the end of the kernel line. B is incorrect because it would

enter single-user mode on a systemd system, requesting the root

password, so the administrator would not be able to change the root

password. (Domain 4. Troubleshooting)

 B and D are correct. Either the route or ip command can be used to

add a default gateway.

 A, C, and E are incorrect. They would result in syntax errors because of

missing arguments within the commands. (Domain 1. System Management)

 C is correct. In order for the gateway to exist, there must be some

connection to the router, but the only connection shown is to the

192.168.8.0 network.

 A, B, and D are incorrect. In this case the issue is there is no connection

to the 10.5.3.0 network. (Domain 4. Troubleshooting)

 A is correct. When the network administrator converts to a tier 1 time

server, that implies the system changes time updates from the intranet

(LAN) to now from the Internet (WAN). NTP uses port 123, which now

must be opened on the firewall.

 B, C, and D are incorrect. B is incorrect because the update can be made

without a reboot. C is incorrect because there is no need to use the

timedatectl command when modifying a configuration file. D is

incorrect because NTP is available on all enterprise versions of Red Hat

Linux. (Domain 4. Troubleshooting)

 A is correct. To remove the immutable setting, Amy must run chattr

-i /etc/apt/sources.list .

 B, C, and D are incorrect. There is no -I option for chattr .

chmod and setfacl can add read/write privileges, but the error

message is “Permission denied,” not “Operation not permitted.” (Domain 4.

Troubleshooting)

 D is correct. sysinit is not an initialization feature of Linux systems.

 A, B, and C are incorrect. systemd , Upstart , and SysVinit

are all Linux initialization systems. (Domain 2. Security)

 B is correct. The correct /etc/fsck column order is device, mount

point, filesystem type, options, dump option, fsck order.

 A, C, and D are incorrect. None of these shows the correct column

order. (Domain 1. System Management)

 A and C are correct. EXT2 and ISOFS are not journaled filesystems.

 B, D, and E are incorrect. EXT3 , XFS , and NTFS are journaled

filesystems, which save changes in a buffer so that data loss is minimized in

case of a system interruption. (Domain 1. System Management)

 C is correct. The tune2fs -t ext3 /dev/sdd4 command fails

because there is no -t option for tune2fs .

 A, B, D, and E are incorrect. A, B, and D are incorrect because

mke2fs -j /dev/sda2 , mkfs.ext3 /dev/sdb3 , and mkfs -

t ext3 /dev/sdc7 will create an ext3 type filesystem on the

partition. E is incorrect because the tune2fs -j /dev/sde8

command will convert an ext2 type filesystem to ext3 by adding the

journal. (Domain 1. System Management)

 D is correct. The w command displays who is logged into the system

and which processes they are running.

 A, B, C, and E are incorrect. A and E are incorrect because the

whoami and id commands show who the user is currently logged in as,

but not the processes they are running. C is incorrect because the who

command will display all logged-in users, but not the processes they are

running. E is incorrect because the whom command is a distractor and

currently does not exist for Linux systems. (Domain 1. System

Management)

 A is correct. Files need to be removed to free up inodes (file handles).

 B, C, and D are incorrect. None of these options creates new file

handles. (Domain 1. System Management)

 D is correct. Running userdel -r will delete the user and the files

from their /home directory and their mail spool. Files in other filesystems

need to be deleted manually.

 A, B, C, and E are incorrect. A, B, and E are incorrect because the

usermod and useradd commands are not capable of removing users.

C is incorrect because the -d option is not available to userdel .

(Domain 1. System Management)

 A, B, and C are correct. Running usermod -e allows an

administrator to add an expiration date. Running passwd -e will

immediately expire a user’s account. The chage command stands for

“change age” and offers many password expiration features. One method is

running chage -E .

 D and E are incorrect. The password command is a distractor and is

not available in standard Linux. The shadow file is a database of

password expiration details and not a command. (Domain 1. System

Management)

 D is correct. The time zone configuration file is called

/etc/localtime .

 A, B, C, and E are incorrect. None of the files exist in standard Linux.

(Domain 1. System Management)

 B is correct. Running localectl status will display the current

locale setting, keymap, keymap layout, and X11 model.

 A, C, and D are incorrect. Running localectl list-locales

will list available locales that can be set using set-locale . The -s

and -l options are distractors and are currently not available within

localectl . (Domain 1. System Management)

 A is correct. Use LC_ALL to override the locality variables.

 B, C, and D are incorrect. The LC_NAME environment variable formats

how first and last names appear in different countries. The LC_CTYPE

environment variable formats the classification and conversion of

characters. The LANG variable specifies locale when LC_var is not

defined. (Domain 1. System Management)

 B is correct. The runme program will run at the effective user ID

(EUID) of todd because the SUID bit is set, as shown with the s in

the permissions -rwsr-xr-x ; therefore, the command is run at the

EUID of the owner of the file, not the user, which is normally done.

 A, C, and D are incorrect. If the SUID bit were not set, runme would

run with the montrie user’s permissions. When logged in as a standard

user, jobs do not normally run with an EUID of root or the group they

belong to (in this case manf). (Domain 2. Security)

 C and D are correct. The default file permissions are 666 and the

default directory permissions are 777 . The purpose of umask is to make

files more secure by removing permissions when files are created. 0027

or 027 removes write permission for the group , and read ,

write , and execute for other .

 A, B, E, and F are incorrect. 026 and 0026 would fail because the

directory permission results to 751 instead of 750 . 0036 and 036

would fail because, although the file permission would result to 640 ,

directory permissions would result to 741 . (Domain 2. Security)

 D is correct. When Jeongeun runs df -h , she will see that the hard

drive is 100 percent full, and that is why she cannot create a new file.

 A, B, and C are incorrect. The question implies that Jeongeun has

already run the quota command because of not getting any quota errors.

The df -i command will show inode utilization, not disk space use.

Running du -sh will only show disk space use in her home directory

and below, not the entire system. (Domain 4. Troubleshooting)

 A is correct. User Iohn forgot to run swapon /d/swapfile to

enable the swap area.

 B, C, and D are incorrect. The swapoff command would disable the

swap area. Iohn already ran mkswap since the swap area was already set

up, as stated in the question. The mount command is used to access a

filesystem, not swap space. (Domain 4. Troubleshooting)

 C is correct. User Quiñonez would run echo deadline >

/sys/block/sda/queue/scheduler to update the I/O scheduler

from cfq or noop to deadline .

 A, B, and D are incorrect. The cat command in A and B would

attempt to list a file called deadline , and the < in A and D means to

read from standard input, instead of to write to standard output. (Domain 4.

Troubleshooting)

 B is correct. User Elimu completes the command as follows for proper

completion of the case statement: case $fruit in

 A, C, and D are incorrect. All would be syntax errors. The at

command is used to schedule jobs. The of command is a distractor and

not a part of standard Linux. The if command is a decision construct used

within scripts. (Domain 3. Scripting, Containers, and Automation)

 D is correct. User Wade would complete the statement with the done

command.

 A, B, and C are incorrect. The end and rof commands are

distractors and not a part of standard Linux. The od command provides an

“octal dump” representation of a file. (Domain 3. Scripting, Containers, and

Automation)

 B is correct. The server administrator should modify

dhclient.conf on each device to change the hostnames of the devices

permanently.

 A, C, and D are incorrect. /etc/sysconfig/network/ is a

directory, not a file. end and od will give a syntax error. (Domain 3.

Scripting, Containers, and Automation)

 B, C, and D are correct. Walter can run either mdadm --follow ,

mdadm -F , or mdadm --monitor to “follow” or “monitor” the

RAID array as a foreground or background job that notifies system

administrators of any RAID issues.

 A is incorrect. The mdadm --build command creates a legacy

RAID array that does not use superblocks (a type of filesystem database

that tracks filesystem state and changes). (Domain 1. System Management)

 D is correct. Lonnie and Landon run virsh --escape ^[to

override the default escape sequence that telnet normally uses, ^] .

 A, B, and C are incorrect. The --debug option performs up to five

levels of logging and accounting for the virsh command. Neither --

esc nor --chstr presently exists in Linux. (Domain 3. Scripting,

Containers, and Automation)

 B is correct. Laeia and Liara run the badblocks command to check

for bad blocks on the hard drive.

 A, C, and D are incorrect. blockcheck and bbcheck are not

presently Linux commands, and the kill command is used to control

running processes. (Domain 4. Troubleshooting)

 B is correct. Sorana can run the watch command with free to

automatically display updates every two seconds, refreshing the screen

every time.

 A, C, and D are incorrect. The period and twosec commands do

not exist or are not available with standard Linux. Running free --

count 5 --seconds 2 would give similar results to what Sorana is

hoping to achieve, but it does not refresh the screen during each update.

(Domain 4. Troubleshooting)

 A is correct. User Ugo can run chmod g+s work so that files and

directories created below the work directory will belong to the same

group as the work directory.

 B, C, and D are incorrect. chmod +a work will result in a syntax

error. chmod g=w work and chmod g=rw work provide write and

read/write privileges to the group, respectively, but new files and directories

below the directory will belong to the EGID (effective group ID) of the

creating user. (Domain 2. Security)

 B is correct. Zhang can run the following to enable users to access her

website: firewall-cmd --zone=public --add-

service=http

 A, C, and D are incorrect. They all would give syntax errors because -

-allow , =web , and --add are improper arguments for firewall-

cmd . (Domain 2. Security)

 C is correct. Henri can run iptables -L to display the current

firewall settings.

 A, B, and D are incorrect. iptables -d and iptables -s set

up the source and destination port, respectively. Use iptables -F to

flush (delete) the DNS tables. (Domain 2. Security)

 B is correct. Petra would run chkconfig –level 35 auditd

on to enable logging and accounting services for her Linux system.

 A, C, and D are incorrect. A would cause syntax errors because

start is an improper argument. C and D are incorrect because the

service cannot be the last argument. (Domain 1. System Management)

 A is correct. Milos needs to know which volume group device to extend,

so that he can then run lvextend -L+20G /dev/myvg/myvol to

add another 20GB to the /dev/myvg/myvol volume.

 B, C, and D are incorrect. It is not necessary to reboot the system or

restart services for extending or growing to take effect. (Domain 4.

Troubleshooting)

 B is correct. Ushna would not use a tool called Orchestrate because there

is no such tool available to her on Centos Linux.

 A, C, and D are incorrect. They all are tools that Ushna could use to set

up and orchestrate the installation of 500 servers. Cloud-init makes it

easy to configure cloud images, Anaconda sets up cloud images, and

Kickstart can perform automated operating system installation. (Domain 3.

Scripting, Containers, and Automation)

 D is correct. Thanasi is currently editing a YAML file.

 A, B, and C are incorrect. The file does not represent a SAML, XML, or

JSON file. (Domain 3. Scripting, Containers, and Automation)

 C is correct. Teliana is currently editing a JSON file.

 A, B, and D are incorrect. The file does not represent a SAML, XML, or

YAML file. (Domain 3. Scripting, Containers, and Automation)

 A is correct. Juan should run the setenforce permissive

command as root to use SELinux in warning mode only.

 B, C, and D are incorrect. B is incorrect because setenforce

enforcing is the current state Juan is in and has made the system mostly

unfunctional. C is incorrect because running setenforce disabled

would allow Juan to work but will not load any SELinux policies, so he

will not be able to test it. D is incorrect because running setenforce

warning would result in an error, as the warning option does not

exist. (Domain 1. System Management)

 B is correct. Katerina runs Ctrl-Z to stop the running the windsim

job. If she runs fg , the job will wake and continue in the foreground. If

instead she runs bg , the job will wake and continue in the background.

 A, C, and D are incorrect. Ctrl-C will cancel the job, Ctrl-\ will

cancel the job and “dump core” (a memory image of the job saved to the

disk and named “core”), and Ctrl-S is ignored. If Katerina runs cat

really-long-file , Ctrl-S and Ctrl-Q will stop and start the

data stream as it displays on the screen. (Domain 1. System Management)

Analyzing Your Results

Now analyze the results! Use this information to identify two things:

 What resources to use to prepare for the exam

 Domains to spend some extra time studying

First, use the following table to determine what tools and resources to

use to prepare for the exams:

With the recommendations in the preceding table in mind, you can now

use the following table to determine which domains to focus your study

efforts on:

CHAPTER 2
Using the vi Text Editor

In this chapter, you will learn about

 The role and function of the vi text editor

 Editing text files in vi

 Editing text files in nano

Every living thing is a masterpiece, written by nature and edited by

evolution.

—Neil deGrasse Tyson, Hayden Planetarium

One of the important skills that you need when working with any Linux

system is the ability to use a text editor effectively. Most system-

configuration tasks in Linux are completed using an editor to modify a text

file, whether you’re rebuilding the operating system or configuring a

service.

The Role and Function of the vi Text Editor

You may be familiar with text editors included with other operating

systems, such as Notepad on Windows or TextEdit on macOS, but vi

(pronounced vee-eye) is different. The vi utility was invented before

computer mice and arrow keys. So, we devote time to vi because

 Knowing how to use a text editor is critical to managing a Linux system. If

you cannot use a text editor, you will struggle with the rest of the topics

presented in this book.

 Linux editors are difficult for most new users to learn.

There are two versions of vi . The classical version is called simply

vi . The newer version is called vim , a vi -improved version that

understands arrow keys. In newer versions of Linux, executing the

command vi actually runs the vim command. Executing the command

vim opens Vi IMproved (see Figure 2-1).

Figure 2-1 Using vim

Each vi and vim installation contains a tutorial called vimtutor .

Running vimtutor will teach you the basic vi -editing commands,

such as maneuvering the cursor and saving your file changes.

With this in mind, let’s discuss how to edit text files in vi .

Editing Text Files in vi

The first time you run vi , you will notice the user interface is very

different from what you may have seen in other text editors. To help you

become familiar with vi , we’ll discuss the following topics:

 Opening files in vi

 The vi modes

 Working in normal mode

 Working in command-line mode

Opening Files in vi

To open a file from the shell prompt with vi , simply enter vi

<filename> . You start within normal mode by default. For example, for

a file named myfile.txt , simply enter vi myfile.txt at the shell

prompt to load this file into the vi editor.

EXAM TIP Even though most Linux operating systems launch vim

when a user runs vi , the Linux+ exam focuses on using vi , so

knowledge of how to move the cursor without arrow keys is important. For

the remainder of the chapter assume that vi and vim are the same

command.

To create a new text file, simply enter vi followed by the name of the

file to create at the shell prompt. For example, Figure 2-2 shows that the

command vi yourfile.txt was entered at the shell prompt. Notice

that when a blank file is opened in the vi editor interface, the “[New

File]” indicator displays at the bottom of the screen. The file resides in the

memory buffer until it is written or saved to the hard drive. If the file is not

saved, it is lost!

Figure 2-2 Creating a new file with vi

Now, let’s discuss vi modes.

The vi Modes

So far, so good, right? Most of the students I teach can handle opening or

creating a file. However, once the file is open, things start to get a little

tricky because, unlike other word processors such as Notepad or gedit, the

mouse and arrow keys are disabled in vi . This is because vi was

invented before mice and arrow keys were invented.

The vi command uses four different operating modes:

 Normal mode

 Command-line mode

 Insert mode

 Search mode

To switch between modes, press the Esc key. This will always return

you to normal mode, from which you can access any other mode.

Normal Mode

Press the Esc key once to enter normal mode. Normal mode allows you to

execute maneuvering commands, such as moving the cursor up, down, left,

right, or scrolling up or down by a half or full page. The most common

maneuvering commands are as follows:

 h Moves the cursor one character to the left

 l Moves the cursor one character to the right

 k Moves the cursor one character to the line above

 j Moves the cursor one character to the line below

 Ctrl-D Moves the cursor down half a page

 Ctrl-U Moves the cursor up half a page

 Ctrl-B Moves the cursor back a full page

 Ctrl-F Moves the cursor forward a full page

Also from normal mode, you can modify a character, change a word,

execute a word search, and even enter command-line mode.

Command-Line Mode

Press : (the colon key) to move to command-line mode from normal

mode. In command-line mode, you can execute commands that allow

searching, replacing, saving, and quitting. Once you press : , the cursor

moves to the bottom of the screen, where you can enter a command line.

For example, to quit from vi , enter any of the following from normal

mode:

 :x Writes the current file to disk and quits vi

 :wq Writes the current file to disk and quits vi

 :q Quits vi if the file has not been modified

 :q! Quits vi if the file has been modified, but any modifications will

be lost

Note that the : places you into command-line mode, and q! runs the

quit-without-saving command.

Insert Mode

There are at least six different insert options within vi . As with most

commands in Linux, vi commands are case sensitive. You must first be in

normal mode before entering insert mode. (If you are ever unsure of which

mode you’re in, press the Esc key. That also switches to normal mode.)

The following are the six basic insert options and what they enable you to

do:

 i Insert text to the left of the cursor

 I Insert text at the beginning of the current line

 a Append text to the right of the cursor

 A Append text at the end of the current line

 o Open a newline below the current line and start inserting text

 O Open a newline above the current line and start inserting text

Search Mode

Use search mode to find a word, phrase, or string. Use the forward slash

(/) to search forward, or use the question mark (?) to search in the

reverse direction.

 /<string> Forward search. For example, /test forward searches

for the string test from the current cursor position.

 ?<string> Reverse search. For example, ?test reverse searches for

the string test from the current cursor position.

 n Continue the search in the same direction. Searches for the same string

specified by /<string> or ?<string> in the same direction.

 N Continue the search in the opposite direction. Searches for the same

string specified by /<string> or ?<string> in the opposite

direction.

Search evaluates strings, so if you enter /the to find every occurrence

of the string the , matches include the , father , mother , and any

other word in which the the string appears.

Working in Normal Mode

When you open a file in vi , you are placed into normal mode. Note that

on the left side of the screen, as shown in Figure 2-2, there are several lines

of tildes (~). These characters simply indicate that the corresponding lines

are empty. As you add lines to the file, the tildes begin to scroll away and

disappear.

Cursor Movement

Unlike vim , vi does not support the use of the arrow keys or mouse to

navigate the cursor, so the vi developers created alternate methods of

navigation. Some of the most common methods of cursor navigation are

listed here:

 w Moves the cursor right to the next word

 b Moves the cursor left to the previous word

 ^ Moves the cursor to the beginning of the line

 $ Moves the cursor to the last character on the line

 nG Moves the cursor to line n

 gg Moves the cursor to the first line of the document

 G Moves the cursor to the last line of the document

Preceding a command by a number repeats the command that number of

times. For example, 2h moves the cursor two characters to the left and

5j moves the cursor down five lines.

Deleting and Replacing Characters and Words

While in insert mode, you can remove recently added text by pressing the

Backspace key. But in normal mode, use the following commands to

delete a character, word, or line:

 x Deletes the character in the current cursor position

 X Deletes the character to the left of the cursor

 u Undoes the last edit

 r Replaces the character in the current cursor position

 R Replaces characters until return to normal mode

 dw Deletes a word from the current cursor position to the end of the word

 D Deletes the rest of the current line from the cursor position

 dd Deletes the current line

Changing a Word or Line

While in normal mode you can use the C or c prefix to change text in

classic vi or in vim . The following list displays some of these features:

 cw Changes the current word

 C Changes from the current cursor position to the end of the line

 cc Changes the current line

Copying, Deleting, and Moving Lines

To copy or delete a line in normal mode, move the cursor to the line and

copy (called yanking) or delete the lines as described here:

 yy Yanks (copies) the current line into the buffer

 3yy Copies the current line and the next two lines into the buffer

 dd Deletes the current line and places it into the buffer

 5dd Deletes the current line and the next four lines and places them into

the buffer

 p Pastes the lines from the buffer in the line below the cursor

 P Pastes the lines from the buffer in the line above the cursor

Repeating a Command

To repeat the last command in normal mode, press the period (.) key.

Saving and Quitting in Normal Mode

From normal mode enter the ZZ command to write the current file to disk

and quit.

Working in Command-Line Mode

The command line executes commands that are asserted against the entire

document. To enter command-line mode, press : from normal mode. This

places the cursor at the bottom of the current screen, as shown in Figure 2-

3. Next, enter commands at the : prompt to accomplish file-related tasks,

as discussed next.

Figure 2-3 The vi command-line mode command prompt

NOTE Examples of commands written for command-line mode will

always start with a leading : for clarification.

Deleting Lines

To delete lines in command-line mode, specify a line number or a range of

line numbers followed by the d command:

 :nd Deletes line n

 :n,yd Deletes from line n to line y

Saving and Exiting from vi

To write the file to disk, from normal mode enter :w <Enter> . When

complete, the prompt message at the bottom of the screen indicates the file

has been written to disk, as shown in this example:

Entering w <filename> or save <filename> at the command-

line prompt writes the file to a different filename. These other commands

also save and/or quit files from normal mode:

 :w! Overrides read-only file permission and forces write changes

 :e! Forgets changes since the last write and continues editing from

where you left off without the recent changes

Remember, the three ways to save and quit from vi are :x , :wq ,

and ZZ (with no colon).

Searching and Replacing Text

The following are command-line commands to search and replace strings

within vi . By default, the search begins at the line the cursor is on.

 :s/<current_string>/<replacement_string>/ Searches

for a string on the current line only and replaces the first instance of the

string. Given the line breakfast is our morning break , the

command-line command :s/break/old/ would produce the line

oldfast is our morning break .

 :s/<current_string>/<replacement_string>g Searches

for a string on the current line and replaces all instances of the string on the

line. Given the line breakfast is our morning break , the

command-line command :s/break/old/g would produce the line

oldfast is our morning old .

 :%s/<current_string>/<replacement_string>/g Searches

for all instances of the string in the document and replaces every instance.

Syntax Checker

Another reason to use vim over the vi editor is that it provides a very

useful syntax checker. This feature can be a real lifesaver when you’re

writing scripts or editing configuration files.

The command-line command to enable and disable the syntax checker is

:syntax on | off (the | or “pipe” symbol is commonly used for

the word “or”). For example, to enable the syntax checker, enter the

following within vim :

:syntax on

After doing so, different elements in the script or configuration file are

denoted with different colors. If there is a syntax error, the syntax checker

highlights the mistake with an alternate color to indicate that you need to

correct it. An example of using the syntax checker within a configuration

file is shown in Figure 2-4 (sans colors).

Figure 2-4 Using the vi syntax checker

Configuration Files

The vim editor uses two configuration files: the system-wide

configuration file /etc/vimrc and the user-specific file ~/.vimrc in

the user’s home directory. The statement set number in either of these

files will display line numbers in the vi files during editing.

After you’ve had a few months of experience working with vi , it

becomes a simple yet powerful text editor to use. Let’s flatten the learning

curve a bit by spending some time practicing with vi in the following

exercise.

Exercise 2-1: Using the vi Editor

In this exercise, practice using the vi editor to create and manipulate text

files.

VIDEO Watch the Exercise 2-1 video for a demonstration.

Log on to the virtual machine provided with this course as student1

(password student1) and then follow these steps:

 Open a terminal.

 The current directory should be the user’s home directory. Verify this by

entering the command pwd at the shell prompt. (Typing the command cd

will always return to the home directory.)

 At the shell prompt, enter vi test.txt . The vi editor should run

with test.txt open as a new file.

 Press the I key to enter insert mode.

 Enter the following text in the file:

Now is the time for all good men to come to the

aid of their country.

 Save the file by completing the following steps:

Press Esc to return to normal mode.

 Enter :w <Enter> .

 Exit vi by entering :wq <Enter> .

 Reload test.txt in vi by entering vi test.txt at the shell prompt.

 Display the status line by pressing Ctrl-G while in normal mode.

 Use gg to move the cursor to the beginning of the first word in the first

line of the file.

 Search for all occurrences of the letter a by completing the following steps:

While in normal mode, enter Esc /a <Enter> .

 Find the next instance of the letter a by pressing the n key.

 Press Esc to enter normal mode. Use the h , j , k , and l keys to

maneuver the cursor to the first letter of the word time .

Delete the word time by using the dw command.

 Use the h , j , k , and l keys to move the cursor to the period at the end

of the last line.

 Exit the file without saving the changes by entering Esc :q! .

 vi provides a user tutorial. Enter the command vimtutor to execute a

self-paced tutorial for more practice with vi .

Editing Text Files in nano

GNU nano is a clone of Digital Equipment’s pico editor. It is easier to

use than vim because it does not contain command-line modes,

understands arrow keys, and has a context-driven menu displayed at the

bottom of the page (see Figure 2-5).

Figure 2-5 The nano editor screen

Command Keys

The nano editor uses both the Ctrl key (symbolized as ^ in the help

menu) and the Alt key to issue commands. So, the command key

sequence ^G is actually entered as Ctrl-G and will open nano ’s help

screen. The command sequence Alt-/ moves the cursor to the bottom of

the document.

Table 2-1 illustrates some options for opening a file.

Table 2-1 nano Open File Options

To move the cursor, use the key sequences specified in Table 2-2.

Table 2-2 nano Key Sequences

You can find additional nano documentation at https://www.nano-

editor.org.

Configuration Files

The nano editor uses two configuration files: the system-wide

configuration file /etc/nanorc and the user-specific file

~/.nanorc in the user’s home directory. The statement set nowrap

in either of these files mitigates the need for the -w option, making it

easier to work with files transferred from Windows computers.

https://www.nano-editor.org/

Chapter Review

This chapter introduced some of the commands used to edit files using vi .

As a CompTIA Linux+ candidate, you should be able to open a file, modify

the contents of the file, and save the file. Use the built-in tutorial,

vimtutor , to practice vi skills that are critical to passing the Linux+

exam.

In this chapter you learned the following:

 Linux uses text files to store operating system and application-configuration

settings.

 The classic version of vi is called vi and the newest version is called

vim (Vi IMproved).

 To open a file with vi , enter vi <filename> . If the file doesn’t exist,

a new file will be created.

 The vi editor opens into normal mode by default.

 To switch to insert mode, press i , I , a , A , o , or O .

 To switch back to normal mode, press the Esc key.

 dd Deletes the entire current line.

 p Pastes the lines from the buffer in the line below the cursor.

 P Pastes the lines from the buffer in the line above the cursor.

 u Undoes the last action.

 yy Yanks (copies) the current line into the buffer.

 ZZ Saves the current file and quits out of vi .

 h Moves the cursor left one character.

 j Moves the cursor down one line.

 k Moves the cursor up one line.

 l Moves the cursor right one character.

 From within normal mode, enter a colon (:) to switch to command-line

mode.

 : w Writes the current file to disk.

 :x Writes the current file to disk and then exits vi .

 :wq Writes the current file to disk and exits vi .

 :q Closes vi without saving the current file.

 :q! Closes vi without saving changes, even if the file has been

modified.

 :e! Forgets changes since the last write and continues editing from where

you left off without the recent changes.

 Pressing Ctrl-G displays a status line at the bottom of the interface.

 Entering /<string> forward searches for the specified string.

 Entering ?<string> reverse searches for the specified string.

 The nano editor is simpler than vi because the cursor can be

maneuvered with arrow keys.

 To save and exit from nano , press Ctrl-X .

Questions

 How are operating system and application configuration parameters stored

on a Linux system?

 In text files

In the Registry

 In .ini files

 In the system database

 Beth is trying to quit a file without saving any new edits since the last time

she wrote the file to disk. She receives the error message “No write since

last change.” Select the answer that correctly describes what has occurred

and how to fix it.

 The buffer has been modified without writing the change to disk. Execute

Esc :wq!

The buffer has been modified without writing the change to disk. Execute

Esc :w!

 The buffer has been modified without writing the change to disk. Execute

Esc :w and then Esc :q

 The buffer has been modified without writing the change to disk. Execute

Esc :q!

 Your cursor is positioned at line 14 of the document. Which commands will

bring the cursor to the top of the document? (Choose two.)

 Esc 1G

Esc :GG

 Esc gg

 Esc :gg

 Phillip has a terminal window open on his Linux system, and the current

directory is /tmp . He needs to use vi to edit a text file named vnc in

the /etc/xinetd.d directory. Which of the following commands

should Phillip use to do this?

 vi vnc

vi /tmp/vnc

 vi /etc/xinetd.d/vnc

 vi /etc/xinetd.d

 Karrye has a terminal window open on her Linux system, and the current

directory is /home/karrye . She needs to create a new file in her home

directory named resources.txt using vi . Which of the following

commands should Karrye use to do this?

 vi resources.txt -new

vi resources

 vi ~/resources

 vi resources.txt

 Which mode does vi open into by default?

 Command-line mode

Insert mode

 Normal mode

 Replace mode

 After opening a file, Ralph uses the h , j , k , and l keys to move the

cursor to the line he wants to edit. He tries to type, but nothing happens.

Why?

 The vi editor is in insert mode. He needs to switch to normal mode.

The vi editor is in normal mode. He needs to switch to insert mode.

 The vi editor is in insert mode. He needs to switch to replace mode.

 The text file is corrupt.

 Audrey uses vi to edit a text file in insert mode. Because of the nature of

the changes she has made to the file, she needs to switch to replace mode.

Which key or key combination should Audrey use to do this?

 Esc R

Ctrl-X Ctrl-R

 :

 I

 Roderick is using vi to edit a file in insert mode. He needs to switch back

to normal mode. Which key should Roderick press to do this?

 Insert

:

 Esc

 Backspace

 Herman is using vi to edit a file in normal mode. He tries to use the

Backspace key to delete a word, but nothing happens. What’s wrong

with the system?

 He needs to switch to normal mode.

He needs to press Ctrl-Backspace .

 Nothing is wrong; Backspace doesn’t work in normal mode.

 He needs to switch to command-line mode.

 Pamela created a new file using vi and now needs to save the file without

exiting the editor. Which command should Pamela use to do this?

 :s

:w

 :save

 :exit

 Ronald created a new file using vi and needs to save the file to disk and

exit the program. Which commands should Ronald use to do this? (Choose

three.)

 :w

:e!

 :wq

 :x

Esc ZZ

 Sherry made several changes to a configuration file using vi . She has

found a myriad of mistakes and wants to quit without saving the changes so

that she can start over. Which command should Sherry use to do this?

 :q!

:exit

 :q

 :exit!

 Stephen is working with a file in vi normal mode. He locates a word in

the file that needs to be deleted and places the cursor at the beginning of

that word. Which command should Stephen use to delete this word without

deleting the space that follows the word?

 dw

de

 d$

 dd

 Rene is using vi to edit a file. She is in normal mode. Which of the

following commands should Rene use to forward search for the string

“server” from the current cursor position?

 /server

search=server

 /"server"

 find "server"

 Referring to question 15, Rene would like to continue searching for the

string “server” but wants to reverse the search direction. Which command

should Rene use to do this?

 n

N

 ?

 /

Answers

 A. Linux uses text files to store configuration parameters for both the

operating system and applications or services running on the system.

 D. vi requires users to write the contents of the buffer to disk before

quitting. Users may override any errors by adding ! to the end of the

command. Therefore, the command-line command :q! will quit the file

without writing new entries in the buffer to disk.

 A, C. Both Esc 1G and Esc gg move the cursor to the first line (top)

of the document.

 C. Because the file to be loaded doesn’t reside in the current directory,

Phillip has to provide the full path to the file along with its filename when

starting vi .

 D. Because Karrye has not specified a path, vi will create the file in her

current directory, which is what she wants.

 C. By default, vi opens in normal mode.

 B. The vi editor opens by default into normal mode. Ralph must press the

i , I , a , A , o , or O key to switch to insert mode to start editing the

file.

 A. Pressing the key sequence Esc R places vi in replace mode.

 C. Pressing Esc while in insert mode switches vi to normal mode.

 C. The Backspace key doesn’t work in normal mode. Herman must first

switch to insert mode or replace mode.

 B. Entering :w writes the current memory buffer to disk without exiting

the editor.

 C, D, E. Entering :x causes vi to save the current file and exit the

program, as does entering :wq or Esc ZZ .

 A. Entering :q! exits vi without saving changes to the current file.

 B. Entering de in normal mode will cause vi to delete the word without

deleting the space that follows the word.

 A. Entering /server in normal mode will search forward for the

expression “server” in the file.

 B. The N command will reverse the current search direction.

CHAPTER 3
Working with the Linux Shell

In this chapter, you will learn about

 What a shell is

 Configuring the shell

 Setting a local environment

 Setting time

 Bash configuration files

 Redirection

It’s really about how you collect the data, use the data, and turn it into

action.

—Lisa P. Jackson, Apple, Inc.

Linux administrators generally work within a command-line environment

called the shell, instead of a graphical environment like in operating

systems such as macOS and Windows; because of this, understanding

command-line utilities is critical in Linux. Linux allows for different shell

environments which either secure or simplify the command-line experience.

A majority of Linux administration work is done using a shell, and in this

chapter, you will learn about the shell provided on all Linux versions

known as bash .

You may find it helpful to log on to the virtual machine while reading

this chapter.

What Is a Shell?

A shell is a program that functions as a user interface and command-line

interpreter when using a command-line interface. It’s called a shell because

it provides an interface between the user and the hardware, so like a turtle’s

shell, it protects the hardware from the user. (Chapter 13 details another

shell feature known as scripting.)

Users need a way to tell the operating system the tasks to complete, and

the operating system needs a way to communicate results to users. A user

interface allows a user to interact with the operating system. Linux provides

two types of user interfaces:

 Command-line interface (CLI) The command-line interface allows users

to communicate with the Linux operating system by typing a command and

then pressing Enter . For example, you can type ls and press Enter

to display the files available to you, or type who and press Enter to see

who is currently using the computer.

 Graphical user interface (GUI) The easy-to-use graphical user interface

allows users to interact with the Linux kernel using a mouse.

Configuring the Shell

In this section, we discuss different shell resources. The shell resources

regulate the user environment and track how the shell operates.

In this section, you will learn about

 The life of a process

 Managing variables

 Configuring aliases

Let’s start with shell processes.

The Life of a Process

A process is a single instance of a program that operates in its own memory

space. The operating system assigns a unique process ID (PID) each time a

program is started. This PID is used to control and track resources assigned

to the program.

For example, when you execute the vim command, a vim process

starts and is assigned a PID. If you execute vim again in another terminal,

the new vim process starts with a different PID. Doing this a third time

produces another instance of vim with a different PID. The result is three

unique vim instances, as shown in Figure 3-1, where the vim PIDs are

7555 , 7567 , and 7568 , respectively.

Figure 3-1 Three instances of the vim process

Parent and Child Processes

After you log on to a system, you are presented with a default shell for

passing commands to Linux. The default shell program is called bash .

When you execute a command such as ls , a subshell or child process

is created to engage with the operating system. This new child process is

initially a copy of the parent bash process, but using a new PID. The

exec system call overwrites the new PID with the ls command. Once

the ls command completes, it exits, and a prompt is displayed to run the

next command. This process is detailed in Figure 3-2.

Figure 3-2 The life cycle of a process

NOTE The term spawn is used to describe a parent process creating a

child process.

Managing Variables

A variable is a memory location that is assigned a name and is used to store

data. Variables are used to configure shell environments or to temporarily

store program data. When a user logs off or the system is turned off, data

stored in these memory locations are lost.

The two types of variables we’ll discuss are shell variables and

environment variables.

Shell Variables

A shell variable only exists in the memory space of the shell in which it was

created. This means that when a shell variable is created within a parent

process, the variable is available in that process but not in any child process.

The syntax for creating a shell variable is <variable_name>=

<value> . The command flower=rose creates the shell variable

flower and stores the word rose . Executing the command

flower=daisy changes the contents of the shell variable flower to

contain the word daisy .

To view the contents of a variable, execute the command echo

$<variable_name> . The echo command displays a line of text. The

dollar sign ($) preceding the variable name is a metacharacter that

replaces the name of the variable with the value stored in the variable.

Therefore, if the current value of the variable flower is daisy , the

command echo $flower would display the output daisy .

The set command displays a list of all the shell variables and

functions in the current process. Figure 3-3 displays partial output of the

set command.

Figure 3-3 Partial output of the set command

Environment Variables

Unlike shell variables, environment variables are visible to child processes.

For example, the EDITOR variable contains the name of the system editor.

If no assignment is made, vi becomes the user’s default editor. If a user

prefers the nano editor, they have to override vi being the default editor

by changing the value of the EDITOR variable with the command

EDITOR=nano . Since EDITOR is currently a shell variable, it will not

be present when a child process is created.

To convert a shell variable to an environment variable, you need to

assign an export attribute to the variable. When a parent spawns a child

process, all variables with this attribute are visible to the child, as illustrated

in Figure 3-4.

Figure 3-4 Shell versus environment variable visibility in parent and child

processes

EXAM TIP The CompTIA Linux+ exam could show a compound

command to set an environment variable using the ; as follows:

<variable_name>=<value>;export <variable_name> .

Also, you can define an environment variable as follows: export

<variable_name>=<value> .

To create the environment variable, execute the command export

<variable_name>=<value> . For example, the command export

truck=chevy creates the environment variable truck and assigns it

the value of chevy , and this variable is now available in parent and child

processes.

Convert existing shell variables to environment variables by running the

command export <variable_name> ; this assigns an export

attribute to existing variables. The unset command deletes the variable

and removes it from the environment. The env command displays a list of

all environment variables in the current shell.

NOTE Running declare -p <variable_name> displays the

variable’s properties. The -x in the properties section of the output

signifies that it is an environment variable.

Configuring Aliases

An alias is a command shortcut. By default, the ls command displays

monochrome output. To colorize the output, execute ls --

color=auto . To avoid typing the --color=auto option each time,

create an alias using the following command syntax:

alias <alias_name>='<command>'

The command alias ls='ls --color=auto' creates an alias

to replace the default ls . Aliases take precedence over all other

commands, so every time the ls command is run, the command ls --

color=auto executes.

NOTE An alias exists only in the shell in which it was created or loaded.

Line 1 of Figure 3-5 shows the results of creating the alias ls='ls --

color=auto' (because the color is hard to discern in this black-and-

white book, a color version of Figure 3-5 is available in the online

resources). Executing the alias command (line 5) displays a list of

aliases loaded into memory. Using the grep command and piping features

(|) filters out desired aliases (the grep command, piping, and other

features are detailed in Chapter 5).

Figure 3-5 Creating and removing an alias

On line 8, the backslash (\) that precedes the ls command

temporarily negates the alias. Notice the output on line 9 (it is monochrome,

although it may be hard to tell in this book).

On line 16, the command unalias ls removes the alias from

memory. The output on line 23 is monochrome.

To permanently remove an alias, use the unalias command.

CAUTION Before creating an alias, make certain the alias name is not in

use. Use the command type -a <proposed_alias_name> to

display any commands, aliases, or functions currently using the proposed

alias name.

The backslash (\) is a metacharacter that is used to negate the special

significance of the following character or word and execute the command in

its default configuration. Notice in the following example how the

backslash before $ negates the special significance of the metacharacter:

In line 1 of the example, the value of the SHELL environment variable

is displayed on line 2. The \ is used in line 3 to negate the meaning of the

$, so the result in line 4 is the literal $ and not the meaning of the SHELL

variable.

Setting Up the Local Environment

Locale settings are used to set language- and country-specific settings such

as date style, time style, and currency settings. Setting up the local

environment means understanding the following:

 Locale settings

 Character encoding

Let’s first cover what is tested on the CompTIA Linux+ exam.

Locale Settings

Locale settings are used to define output formats used by applications

depending on the location of the Linux computer. Locale settings include

address style, phone format, currency type, and more.

To set the locale, define the LANG variable, LC category variables, or

the variable LC_ALL by using the localectl or locale command.

Locale category variables are listed in Table 3-1.

Table 3-1 Locale Categories

The command locale -k <locale_category> displays

formatting information for that category. For example, the command

locale -k LC_TELEPHONE displays the following output:

Locale categories are associated with a locale name. The locale name

defines formatting for a specific region. Locale names are formatted as

follows:

An example of a locale name is en_US.UTF-8 . An example of a

modifier to specify use of euro currency is @euro .

Executing the command locale -a or localectl list-

locales lists available locale names. The command localectl

list-locales | grep en displays all locale names for the English

language. Run locale to display the value of locale categories for the

current session, as shown here:

The variable LANG stores the locale name for the current login session.

The following locale name shows that in this case, the current session uses

the US English character set, which is encoded using UTF-8, and not some

other encoding.

The variable LC_ALL overrides all locale category settings and the

LANG variable.

The localectl Command

The command localectl is used to view and modify system locale and

keyboard settings. For example, the command localectl set-

locale LANG=<locale_name> sets the default system locale

variable.

The command localectl set-locale LANG=en_CA.UTF-8

modifies the /etc/locale.conf file that stores the system locale and

keyboard map settings. Use either localectl or localectl

status to verify the change to the /etc/locale.conf file.

EXAM TIP Make sure you know how to verify changes within

/etc/locale.conf using localectl status and how to list

locality using localectl list-locales .

Character Encoding

This section on character encoding is written here for your reference;

character encoding is not included in the CompTIA Linux+ exam

objectives.

A character is a written symbol. A character set is a defined list of

characters used for a specific purpose. The English alphabet is a character

set that contains 26 letters, 10 digits, and 14 punctuation marks.

Characters are stored by assigning a numerical value to the character.

The process of assigning a numerical value to a character is called

encoding. The stored value is called a code point. An encoding format

defines the number of bits used to store a character (code unit) and how the

character is stored.

Let’s take a brief look at the ASCII and UTF encoding formats.

An ASCII Primer

The American Standard Code for Information Interchange (ASCII)

character set uses a 7-bit code unit. ASCII supports up to 128 characters (95

printable characters, 32 control codes, and 1 space character). Extended

ASCII uses an 8-bit code unit and can support 256 characters.

A Unicode Primer

The code unit size of encoding formats such as ASCII and EBCDIC are

unable to store all the different world characters. Unicode uses variable and

fixed encoding formats to provide up to a 32-bit code unit and can store

1,114,112 different characters.

Unicode defines three encoding formats: UTF-8, UTF-16, and UTF-32

(see Table 3-2).

Table 3-2 Unicode Encoding Formats

UTF-8 and UTF-16 use up to 32 bits and variable encoding to store

characters. Variable encoding uses the most significant bits of code point, or

encoding value, to determine how to decode character information. UTF-32

uses fixed encoding, which means all 32 bits (4 bytes) are used to store a

character.

Setting Time

The Linux operating system uses two clocks: the hardware clock, also

known as the real-time clock (RTC), and the system clock. The RTC is a

battery-powered circuit that maintains time even when system power is

removed.

The system clock is the operating system clock. During the boot process,

the system clock is set to the same value as the hardware clock. From that

moment until the time the operating system is terminated, the system clock

is maintained by the kernel. The system clock reports time using

Coordinated Universal Time (UTC) and depends on individual processes to

change UTC into local time.

NOTE UTC is a time standard and is also referred to as Zulu time.

The date Command

The date command is primarily used for reporting information from and

managing the system clock. The date command displays the day, month,

time (24-hour clock), time zone, and year.

With the date command’s plus-percent feature, you can print just the

minute, hour, or year by entering date +%M for the current minute,

date +%H for the current hour, or date +%Y for the current year.

Table 3-3 lists and defines additional percent codes, and the full listing is

available from the date man page.

Table 3-3 date Command Percent Codes

System administrators can set the date and time by using the date -s

command using this format:

"Day Month Date Time Time-Zone Year"

The following illustration shows an example of using date -s :

The /usr/share/zoneinfo/ and /etc/localtime Files

The directory /usr/share/zoneinfo/ and the file

/etc/localtime are used to configure the system’s time zone. The

directory contains binary data files for worldwide time zones and is used to

set a default system-wide time zone by linking a file from zoneinfo to

/etc/localtime .

The commands date , date +%Z , ls -l /etc/localtime ,

and timedatectl display the current system time zone.

EXAM TIP An ls option that hasn’t been discussed yet is ls -d ,

which means do not descend into directories. The user will see the directory

name but not the files listed in the directory. Run ls -ld to view

directory permissions instead of file permissions; for example:

ls -ld /usr/share/zoneinfo/

To reset the system-wide time zone, remove the current symbolic link to

/etc/localtime by running unlink /etc/localtime or \rm

/etc/localtime . (Symbolic links are covered in detail in Chapter 5.)

Then, create another symbolic link, as in the following example to set

Pacific Time:

ln -sf /usr/share/zoneinfo/America/Los_Angeles

/etc/localtime

The hwclock Command

The hwclock command is used to manage the real-time clock, or RTC.

The commands hwclock , hwclock -r , and hwclock -- show

display the current hardware clock time in local time, as shown here:

The output to the right displays the time offset. Applying the offset to the

displayed time produces the actual time.

The command hwclock -s or hwclock --hctosys (hardware

clock to system clock) sets the system time using the RTC and sets the time

zone to the current time zone. The command hwclock -w or hwclock

--systohc sets the system clock to the same time as the hardware clock.

The timedatectl Command

The command timedatectl or timedatectl status can be

used to view and manage system clocks. Executing the command

timedatectl produces the output shown here:

Lines 6 and 7 confirm that the Network Time Protocol (NTP) is enabled

and is being synchronized with an NTP server, which occurs every 11

minutes. Details on NTP are covered in Chapter 14.

The command timedatectl list-timezones displays a list of

time zones. The command timedatectl set-timezone "<time

zone>" immediately changes the system-wide time zone.

For example, the command timedatectl set-timezone

"America/New_York" immediately changes the system-wide time

zone to Eastern Time. Behind the scenes, this command updates the

symbolic link between /etc/localtime and

/usr/share/zoneinfo/America/New_York .

To change the RTC from local time to UTC, use the following

command:

timedatectl set-timezone UTC

Setting System Time and Date

The command timedatectl set-time 'HH:MM:SS' sets the

system time. To change the system date, execute the command

timedatectl set-time 'YYYY-MM-DD' . The command

timedatectl set-time 'YYYY-MM_DD HH:MM' changes both

the system time and date.

If automatic time synchronization via NTP is enabled, setting the time

with timedatectl commands will not work.

Bash Configuration Files

In the previous section, you learned how to manage variables, shell options,

and aliases via the command line and how to change the system’s locale and

time settings. Variables, aliases, and shell option settings executed on the

command line are stored in memory. These settings disappear when the user

logs out of the system.

But when you create aliases and variables that make your job easier, you

want to keep those settings. Configuration files define settings that remain

persistent even after logging off or rebooting.

The bash configuration files are

 /etc/profile

 /etc/bashrc

 /home/<user_name>/.bash_profile

 /home/<user_name>/.bashrc

 /home/<user_name>/.bash_logout

The files /etc/profile and /etc/bashrc are system-wide

configuration files applied to all applicable users when they log in. Files

located in the user’s home directory (/home/<user_name>) contain

configuration information only for that user.

The configuration files /etc/profile and

/home/<user_name>/.bash_profile contain a series of

commands used to configure the user’s working environment, such as

environment variables. The configuration files /etc/bashrc and

/home/<user_name>/.bashrc are used to configure Bash shell

features, such as aliases. Use /home/<user_name>/.bash_logout

to perform operations during logout, such as removing files older than 30

days from a wastebasket.

Concepts to understand for the CompTIA Linux+ exam include the

following:

 Login script order

 The source command

Let’s first discuss the login script order.

Login Script Order

When a user logs into a Linux system, customization scripts are read in the

following order when using the Bash shell:

 /etc/profile

 /home/<user_name>/.bash_profile

 /home/<user_name>/.bashrc

 /etc/bashrc

The file /etc/profile is read once at login, and the user might find

these environment variables:

 HOSTNAME The hostname of the computer or node

 MAIL The file where a user’s receiving mail resides; for example,

MAIL=/var/spool/mail/<user_name>

The file /home/<user_name>/.bash_profile is used to

customize the bash environment for a user and is read once at login. The

file contains variables used to configure the user’s working environment,

such as the default editor. The user might find these settings:

 EDITOR The default editor settings; for example,

EDITOR=/usr/bin/nano

 PATH Search path of directories where executable programs can be found

The file /home/<user_name>/.bashrc is used to customize how

the Bash shell runs and contains aliases, functions, or shell parameters.

/home/<user_name>/.bashrc is executed each time a shell

(pseudo-terminal) is started in a GUI environment. This file might contain

aliases, such as these:

EXAM TIP Linux uses the tilde (~) character to represent

/home/<user_name>/ , or a user’s home directory. For example,

/home/<user_name>/.bashrc can be represented as ~/.bashrc

for the currently logged-on user.

The file /etc/bashrc is also read when a pseudo-terminal starts and

may contain these settings:

 SHELL The command shell for this login session; for example,

/bin/bash

 PS1 The command prompt configuration

NOTE Scripts in the directory /etc/profile.d contain

configuration information for specific programs and are read or sourced

automatically during the login process. Files ending in . sh are sourced

when using the Bourne, Korn, or Bash shells. Files ending in . csh are

sourced when using the C-shell.

The source Command

Configuration changes are not active until they are stored in memory, or

sourced. To place changes in memory, the user must execute the commands

in the configuration file. The command source <filename> or .

<filename> (note the leading dot and space) executes the commands in

a configuration file.

Once a user makes changes to a configuration file such as

~/.bash_profile , they can run source ~/.bash_profile or

. ~/.bash_profile to make the configuration changes available

immediately.

Exercise 3-1: Working with Variables, Parameters, and Aliases

This exercise enables you to practice creating and removing variables,

aliases, and shell options as well as editing shell configuration files. But

first, I want to emphasize something useful for your career. When executing

a command, be sure to test the results. For example, to open a child shell,

use the following procedure:

 Verify the process ID (PID) of the current shell using the ps or ps -f

command.

 Create the child process (bash).

 Verify you are in a child shell by executing the ps -f command and then

look for a PID whose parent process (PPID) is the same as you verified in

step 1.

With that in mind, log on as user student1 (password: student1)

on the virtual machine provided with the book and then follow these steps:

VIDEO Watch the Exercise 3-1 video for a demonstration of this exercise.

 Right-click the Desktop and select Open Terminal. This opens a text

terminal (pseudo-terminal).

 Execute the ps command to display a list of processes executing on the

current terminal. Notice the process bash . Also notice the process ID

associated with the command bash in the PID column. This is your

current shell.

 Execute the bash command.

 Execute the command ps -f . Look at the second instance of bash and

its PID. Now look at the parent process ID (PPID). The PPID is the process

number of the shell that spawned the current shell (child). The second

instance of bash is the child shell.

 Type the exit command. This terminates the current shell and returns

you to the parent shell.

 Execute the ps command. Notice the PID.

 Create the shell variable flower and assign it the value rose by

executing the flower=rose command.

 Execute the command echo $flower to see if the variable has been

created. Execute the set command to see all shell variables and the set

| grep flower command to view the shell variable flower .

 Create the variable nut and assign it the value almond by executing the

nut=almond command. Test to see if the variable has been created.

 Open a child shell by executing the command bash and test to ensure you

have created a child shell.

 Determine if the variables flower and nut are present in the child

shell.

 Return to the parent shell.

 Add an export attribute to the variable flower by executing the

command export flower .

 Open a child process by executing the command bash . Use the

commands echo $flower and echo $nut to determine if either the

variable flower or nut exists in the child process. Explain the results.

 Return to the parent shell by executing the exit command.

 Create an environment variable called fruit and assign it the value

apple by executing the command export fruit=apple .

Test to determine the following:

 The variable has been created and is a shell variable in the current shell. To

do this, type the command echo $fruit or set | grep fruit .

 The variable has been assigned an export attribute. To do this, use the

command env | grep fruit .

 To view the status of all shell parameters, execute the command set -o .

 Type the command set -o | grep allexport to view the status of

the shell parameter allexport .

 Type the command set -o allexport . This turns on the bash

parameter, which automatically applies an export attribute to all newly

created variables.

 Verify the allexport parameter has been turned on by executing the

command set -o | grep allexport .

 Create the variable truck and assign it the value chevy by executing

the truck=chevy command. Execute the command env | grep

truck to determine if the variable has been assigned an export

attribute.

 Turn off allexport by executing the command set +o

allexport and verify the shell parameter has been turned off.

 Create the alias ldetc , which will execute the command ls -ld

/etc , by executing the command alias ldetc='ls -ld /etc' .

 Type the command alias to verify the alias ldetc has been created.

You could also type the command alias | grep ldetc .

 Type the command ldetc .

 An alias only exists in the shell in which it is created. To test this, open a

child shell and perform the following procedure:

Execute the ps command to determine what the PID of the current shell is.

 Execute the bash command to open a new shell.

Execute the command ps -f to verify a child shell has opened by making

certain the PPID of the current shell is the PID discovered in step a.

 Determine if the alias created in step 23 exists by trying to execute

ldetc .

Alternatively, execute the command alias , alias ldetc , or

alias grep | ldetc to list the aliases in memory.

 Return to the parent shell by exiting the current process (exit).

 Remove the alias ldetc by executing the command unalias ldetc .

Use the command alias , alias ldetc , or alias | grep

ldetc to verify the alias has been removed from memory.

 Use vi to add set -o noclobber to the last line of the file

/home/student1/.bashrc and then save the file. The shell option

noclobber does not allow a user to redirect the standard output (>) to

an existing file.

 Execute the command set -o | grep noclobber .

Is noclobber turned on or off? Why?

 Start a child process by executing the command bash .

 Determine if the shell option noclobber is turned on or off. Why?

 Return to the parent process. Execute the command source

/home/student1/.bashrc .

Is noclobber turned on or off? Why?

Answers to Exercise 3-1

Answer to step 29 vi /home/student1/.bashrc

Answer to step 30 noclobber will be turned off. After you edit a

configuration file, the changes must be read into memory.

Answer to step 32 noclobber is turned on. The file

/home/student1/.bashrc is read each time a process is opened;

therefore, changes were read into memory.

Answer to step 33 .bashrc is read when a child shell is created or a

source command is issued. When you made the first change to

.bashrc in the parent shell, you did not source .bashrc , so

noclobber was off in the parent shell. When you opened a child shell

(step 31), .bashrc was read; therefore, noclobber was turned on in

the child shell. When you returned to the parent shell, noclobber is

turned off. The command source /home/student1/.bashrc

executes each line in ~/.bashrc (including set -o noclobber).

This command turns noclobber on in the current shell.

Redirection

When a user executes a command, user input is received via the standard

input device (stdin), which is the keyboard by default. All output, except

error messages, is sent to the standard output device (stdout), which is the

monitor by default. Error messages are output to the standard error device

(stderr), again the monitor by default. Figure 3-6 shows the default settings

and their values, 0, 1, and 2, respectively.

Figure 3-6 Standard input, standard output, and standard error defaults

Redirection permits a user to alter from the defaults for stdin, stdout, or

stderr to a device or file using their file descriptors.

File Descriptors

A file descriptor is a reference, or handle, used by the kernel to access a

file. A file descriptor table is created for every process. This table tracks all

files opened by the process. A unique index number, or file descriptor

number, is assigned to a file when it is opened by a process, as defined here:

 fd0 Standard input device

 fd1 Standard output device

 fd2 Standard error device

 fd255 The bash file descriptor 255 tracks controlling terminal

information.

Redirect stdin with <

Use the < operator to redirect standard input. For example, the cat

command is used to list the contents of a file, as shown here:

To input from the /etc/hosts file directly instead of the keyboard,

run

The results appear the same in this case, and more uses of the <

operator will be shown in future chapters.

Using Heredocs with <<

Another form of input redirection is the heredoc, or here document. The

heredoc reads each input line from the current source until it reaches the

limit word. Otherwise, all the lines read up to that point are used as the

standard input for a command. For example:

Notice that the keyword (in this case RNDI , but it could be most any set

of characters) must match the characters in the last line. The cat

command will print data up to, but not including, the keyword.

Although not tested on the current Linux+ exam, the here string, or

<<< operator, allows a user to send a string to a command. For example,

sends the string "hello RNDI" to the cat command.

Redirect stdout with > and >>

Use the greater-than operator (>) to redirect standard output to a file. Use

the double greater-than operator (>>) to append data to a file.

The who command lists all logged-on users on a system, as shown

here:

The pwd command prints the user’s current working directory

/home/kwon and is appended to whofile with the >> operator in

the preceding example.

The > operator will create a file if one does not exist and will overwrite

the file if one does exist. The >> operator will also create the file if it does

not exist, but it will append the standard output to it if it does exist.

NOTE The shell parameter noclobber does not allow the >

redirection to overwrite an existing file. The command set -o | grep

noclobber verifies if noclobber is set. The command set +o

noclobber turns the parameter off.

Redirect stderr with 2>

The control operators 2> and 2>> are used to choose an alternate

standard error file or device. The 2> operator will create a file if one does

not exist and will overwrite the file if one does exist. The 2>> operator

will create a file if one does not exist, but it will append the standard error

to it if one does exist.

The command ls /etc /roses 2> errorfile attempts to list

the properties of the directories /etc and /roses . The directory

/roses does not exist. Since the /etc directory exists, its properties

will be displayed on the standard output device, which is the screen.

Since the directory /roses does not exist, it produces an error

message. The 2> control operator redirects the error message to the file

errorfile .

NOTE As 2> redirects standard error messages, 1> redirects standard

output messages. Most users use > to redirect stdout, but 1> also does

the same as > .

Combining stdout and stderr

The control operators > and 2> may be combined to send both outputs to

the same file or device. The control operator 2>&1 redirects the standard

error to the same location as the standard output. Here’s how this works:

 The control operator 2> designates altering the data stream for error

messages.

 The & character is a Boolean AND.

 The 1 is the file descriptor number for the standard output device.

The command ls -ld /etc /roses > errorfile 2>&1

writes the standard output and standard error to the file errorfile .

The control operator 1>&2 redirects the standard output to the same

location as the standard error. Here’s how it works:

 The 1> control operator redirects the standard output.

 The & is a Boolean AND.

 The 2 is the file descriptor number for the standard error data stream.

The command ls -ld /etc /roses 2> errorfile 1>&2

writes the standard output and standard error to the file errorfile .

Finally, the control operator &> also redirects both the standard error

and standard output to the same file. The command ls -ld /etc

/roses &> errorfile writes the properties of the /etc directory

and the error message to the file errorfile .

Ignoring Error Messages with /dev/null

Often error messages from commands are warnings that can be ignored.

Sometimes there are so many warnings, good stdout data is missed. Using

the null device is one excellent solution. The /dev/null device is a

zero-byte character device that is created each time the system boots. Data

written to /dev/null is discarded immediately.

To recursively list all the files and directories in a filesystem, you can

run ls -R / , but you will see several “permission denied” errors for

files you are not allowed to view. To hide these error messages, run the

command this way:

ls -R / 2> /dev/null

The good output (stdout) is displayed to the screen, and error messages

are not saved, nor do they appear.

Send Data to a Command Using a Pipe

A pipe is a method of connecting the stdout of one process to the stdin of

another process. There are two types of pipes: named and unnamed.

A named pipe is a file that facilitates interprocess communication. A

named pipe takes output from one process and places it into a file. Another

process removes the information from the file. The mknod and mkfifo

commands create a named pipe file. Deleting the file removes the named

pipe.

An unnamed pipe uses the output from the command to the left of the

pipe symbol (|) as the input to the command to the right of the pipe

symbol. To do this, a temporary file is created within Linux. When the

command is completed, the temporary file is removed.

NOTE Press Shift-| on US keyboards to produce the pipe symbol.

The | key (located above the Enter key) is the \ key if you don’t

press Shift simultaneously.

To understand how an unnamed pipe works, we will use a fictitious

temporary file called pipetemp . The command cat file1 | cat

> filea redirects the stdout of the command cat file1 to be the

input of the command cat > filea . The left part of the pipe executes

cat file1 > pipetemp and then the right side of the pipe executes

the command cat pipetemp > filea .

The tee command displays the output of a command to the console

device and redirects the output to a file or device. The command cat

/etc/hosts | tee filea displays the contents of /etc/hosts

on the console device and writes the contents of the file to filea .

Exercise 3-2: Redirection Hands-on Project

In Exercise 3-2, you will perform the following tasks:

 Determine what your login shell is.

 Create local and environment values.

 Determine your process ID and parent process ID.

 Change shell options.

 Create aliases.

VIDEO Watch the Exercise 3-2 video for a demonstration.

Log on as user student1 (password: student1) on the virtual

machine provided with the book and then follow these steps:

 Execute the cd command.

 Type the pwd command. The output should display /home/student1 .

 Create the directory redir by executing the command mkdir redir .

 Execute the command cd redir .

 Execute the command pwd . The output should display

/home/student/redir .

 Use the command cat /etc/hosts > filea to read the contents of

the file /etc/hosts and place the output in filea .

 Read the contents of the file /etc/default/useradd and output the

contents to fileb .

 Use the cat command to view the contents of filea and fileb .

 Redirect the output of the command ls -ld /etc to filea by executing

the command ls -ld /etc > filea .

What happened to the original contents of filea ?

 Append the output of the command ls -ld /etc to fileb by executing

the following command:

ls -ld /etc/ >> fileb.

 Redirect the standard output of the command ls -ld /etc /roses

to filea and the standard error to fileb by executing the following

command:

ls -ld /etc /roses > filea 2 >fileb

 Execute the command ls -ld /etc /roses . Redirect the standard

output to fileb and append the standard error to filea .

 Execute the command ls -ld /etc /roses using three methods to

redirect both the standard output and stderr to file3 .

Redirect the output of the command cat /etc/hosts to file4 and

display the contents on the console device using the command cat

/etc/hosts | tee file4 .

 Execute the command cat < /etc/hosts > file5 . What does it

do?

 Execute the command echo hello > /dev/tty2 .

 Switch to a text terminal by using the key sequence Ctrl-Alt-F2 .

Notice the output on the terminal.

 Return to the graphical environment by using the key sequence Ctrl-

Alt-F1 .

NOTE This exercise omits some steps. This was intentional. I want you to

troubleshoot issues. When an exercise step does not work, make certain

no other conditions exist to prevent a command from executing properly.

If there is difficulty, look at the answer section that follows, or watch the

video.

Answers to Exercise 3-2

Answer to step 9 Upon executing the command ls -ld /etc >

filea , you should receive the error bash: filea: cannot

overwrite existing file . The shell parameter noclobber is

preventing you from overwriting an existing file. Executing the command

set +o noclobber turns off noclobber and allows you to

redirect the output to an existing file.

Answer to step 12 Use the command ls -ld /etc /roses >>

fileb 2> filea .

Answer to step 13 The three methods are ls -ld /etc /roses &>

file3 , ls -ld /etc /roses > file3 2>&1 , and ls -ld

/etc /roses 2> file3 1>&2 .

Answer to step 15 The command cat < /etc/hosts > file5

uses the file /etc/hosts as the input to the cat command and outputs

the results to file5 .

Chapter Review

This chapter introduced the Bash shell. We covered what a shell is and how

to use various facilities to customize the user’s environment and the shell’s

operating parameters. Here are some important points to note:

 The shell is a user interface, command-line interpreter, and scripting

language.

 A process is a single instance of a program.

 A parent process can spawn child processes.

 Variables are used to store data.

 Shell variables only exist in the process in which they were created.

 Environment variables are copied from the parent process to the child

process.

 Shell options are used to configure how a shell operates.

 When programs start, they may use configuration files to configure how

they operate.

 The Bash shell has five configuration files: /etc/profile ,

/etc/bashrc , /home/<user_name>/.bash_profile ,

/home/<user_name>/.bashrc , and

/home/<user_name>/.logout .

 / etc/profile and /home/<user_name>/.bash_profile are

read when a user logs on or executes a command that requires a logon.

 /etc/bashrc and /home/<user_name>/.bashrc are read each

time a new process is started.

 The source or “dot” (.) command is used to read changes in configuration

files into memory.

 Redirection permits a user to alter the stdin, stdout, or stderr device or file.

Questions

 Which of the following statements concerning a shell variable is true?

 The variable will be copied when a new process is spawned.

The variable will not be copied when a new process is spawned.

 The variable name must be in capital letters.

 The variable name must be in lowercase letters.

 What does the set command do?

 Displays a list of shell options and their status

Displays a list of environment variables

 Displays a list of shell variables

 Prepares the system for a Linux installation

 User student1 has logged on and discovered that a user-specific

environment variable assignment is causing a problem. Select all actions

student1 must complete to permanently resolve the problem. (Choose

two.)

 Remove the variable assignment from /home/student1/.bashrc .

Remove the variable assignment from

/home/student1/.bash_profile .

 Remove the variable from memory.

 Remove the variable assignment from /etc/profile .

 A user creates the environment variable test in their logon shell and then

executes the command bash . Executing the command env | grep

test verifies the variable is present in the child process. The user

executes the command unset test . Which of the following statements

is true?

 The variable test is removed from the parent and child processes.

The variable test is removed from the child process and the child

process is exited.

 The variable test is removed from the child process.

 The variable test is removed from the child process and becomes a shell

variable in the parent process.

 Select two commands that create an environment variable in the Bash shell.

(Choose two.)

 export <variable_name> = value

setenv <variable_name>

 export <variable_name>=value

 <variable_name>=<value>;export <variable_name>

 Which commands are associated with shell variables? (Choose two.)

 export <variable_name> = value

<variable_name>=<value>

 env

 set

 Which commands are associated with environment variables? (Choose

three.)

 export <variable_name>=value

export <variable_name>

 <variable_name>=<value>

 env

set

 You execute the command rm but realize that it actually executes the alias

rm , which is equal to rm -i . Without removing the alias from memory,

what commands would offer a way around the issue? (Choose two.)

 unalias rm

/rm

 \rm

 /usr/bin/rm

 A user wants to redirect the standard output of a command to a file without

overwriting the contents of the file. Which redirection operator should the

user apply?

 >

2>

 >>

 2>>

 Which of the following will redirect the standard input and standard output

to the same file? (Choose three.)

 &>

1>&2

 2>&1

 >

2 <

 Assume the directory /fred does not exist and the files error1 and

error2 contain content. What will the command ls –ld /etc

/fred > error1 2>> error2 do? (Choose two.)

 Overwrite the content of the file error1 .

Overwrite the content of the file error2 .

 Append file error1 .

 Append file error2 .

 Refer to question 11. Which file will contain the error messages?

 error1

error2

 None of the above

 Both error1 and error2

 The file error1 exists in the current directory, but when a user attempts

to redirect the output of a command to the file, they receive the message

“Cannot overwrite an existing file.” What is the cause of and fix to this

problem?

 noglob is turned on and it must be turned off using set -o noglob .

noglob is turned on and it must be turned off using set +o noglob .

 noclobber is turned on and it must be turned off using set -o

noclobber .

 noclobber is turned on and it must be turned off using set +o

noclobber .

 Which locale variable will override all locale category settings?

 LANG

LOCALE

 LC

 LC_ALL

 What must you do if you modify settings in the file

/etc/locale.conf using the localectl command?

 Reboot the system

Execute the command . /etc/locale.conf

 Reload systemd

 Execute the command localectl

 Which commands display system clock information? (Choose two.)

 date

hwclock

 timedatectl

 localectl

 Where are time zone data files stored?

 /etc/locale

/etc/local

 /usr/share/zoneinfo

 /usr/lib/time

 Which commands display the current system time zone? (Choose four.)

 timedatectl

date

 ls -l /etc/localtime

 date +%Z

time

Answers

 B. The variable will not be copied when a new process is spawned.

 C. The set command displays a list of shell variables.

 B, C. The question states that user student1 is logged on to the system

Therefore, to remove the problem immediately, student1 must remove

the variable from memory. /home/student1/.bash_profile

contains user environment statements. To prevent the variable from being

created the next time the user logs on, the variable assignment must be

removed from /home/student1/.bash_profile .

 C. Each process executes in its own memory space. Any actions in a child

process do not affect the parent process. Therefore, removing a variable

from a child process does not affect the variable in the parent process.

 C, D. The command export <variable_name>=<value> creates

an environment variable. The command <variable_name>=

<value>;export <variable_name> uses a compound command

to create and then export the variable. Answer A is incorrect because there

are spaces around the equal sign; that is not allowed. (The ; is discussed

in Chapter 13.)

 B, D. The command <variable_name>=<value> creates a shell

variable. The set command displays a list of all shell variables.

 A, B, D. The command export <variable_name>=<value>

creates an environment variable, and the command export

<variable_name> assigns an export attribute to an existing

variable. The env command displays a list of all variables in the current

shell that have been assigned an export attribute.

 C, D. The backslash (\) negates the special meeting of a character; when

placed in front of an aliased command, it negates the alias. You could also

supply the absolute path to the command. The absolute path to a command

takes precedence over aliases, functions, and builtins.

 C. The > and >> symbols redirect the stdout of a file. The >> symbol

creates a file if one does not exist and appends to an existing file if it does

exist, so it is the best choice for this scenario. The > symbol creates a file

if it does not exist, but overwrites the file if it does exist. The 2> operator

redirects the standard error and would overwrite the file. 2>> would

redirect the standard error and append the file.

 A, B, C. The operator &> redirects both the standard output and the

standard error to the same file. The operator 1>&2 redirects the standard

output and ANDs the standard error to the same file. The operator 2>&1

redirects the standard error and ANDs the standard output.

 A, D. The > operator creates a file or overwrites the content of a file. The

operator >> creates a file or appends the file.

 B. The operator 2> redirects the standard error. In question 11, the

operator 2>> appends error messages to file error2 .

 D. The bash option noclobber prevents redirecting the standard output

to an existing file. The command set +o noclobber turns the option

off.

 D. The LC_ALL variable overrides all local category variables and the

LANG variable.

 B. Any time you modify /etc/locale.conf —either by the

localectl command or manually—you must read the new

configuration into memory by executing the command .

/etc/locale.conf or the command source

/etc/locale.conf .

 A, C. The commands date and timedatectl display the system

clock (operating system clock) information.

 C. The directory /usr/share/zoneinfo/ contains time zone data

files.

 A, B, C, D. The output of each of these commands will display the current

system time zone.

CHAPTER 4
Managing Linux Users and Groups

In this chapter, you will learn about

 Linux users and groups

 Creating and managing Linux user accounts

It’s all about data analytics for employee data.

—Ed Smith, Novell

Linux is a multiuser operating system, so it is necessary to restrict users’

access to only those resources they should have permission to access. This

chapter introduces Linux users and groups.

Understanding Linux Users and Groups

Linux uses a method called Discretionary Access Control (DAC) to permit

or restrict access to files. On DAC-based systems the account owner

decides who has permission to access, delete, or modify their files.

In this section you will learn details about

 Linux user accounts

 Displaying user and group IDs

NOTE Linux supports a more granular permission structure called

Mandatory Access Control (MAC), which divides access into classified,

secret, top secret, and so on. These rights are controlled by SELinux or

AppArmor, as discussed in Chapter 16.

Linux User Accounts

A user is a person or service that requires access to system files or

resources. A user account is a method of providing or restricting

access to system resources.

Linux User IDs and Privileges

Linux implements user ID ranges to organize users. Depending on the user

ID (UID), the individual will have few or many privileges. Most users are

standard users and have limited access to system files, whereas the

administrative account called root can perform any function on the

computer. Details of these UID s and privileges are discussed next.

The Meaning of User IDs 0–99 Administrative users 0–99 are added to

the operating system during the installation process. According to the Linux

Standard Base (LSB) Core Specification, user accounts within this range

are created by the operating system and may not be created by an

application (such as LibreOffice).

The All-Powerful root Account The user root or UID 0 (zero) is

a privileged Linux account and the administrator of the system. The root

user can do anything on the computer, such as

 Delete any file

 Kill any job

 Shut down the computer

The user root has access to all files and commands and has full

control of the operating system, including the ability to bypass operating

system or application restrictions. Any user assigned the user ID 0 has

root privileges.

NOTE Linux does not restrict the number of users who share a user ID. It

is possible, but not advisable, to assign user ID 0 to multiple users.

Since root activities could damage the system, it is important to limit

access to root privileges. Most companies assign a system administrator

with root privileges, and all other users work in standard user accounts

with limited privileges (also known as “least privilege”—only enough

privileges to do their job).

User and System Accounts A user account provides nonprivileged access

to system resources. User account ID ranges are specified by the variables

UID_MIN and UID_MAX in /etc/login.defs , the file that defines

new user defaults, such as the location of the user’s mailbox, their user ID,

and their password aging defaults. The default minimum UID is 1000, and

the default maximum UID is 60000, but it can be as high as 4.2 billion

depending on the CPU model and Linux version.

A Linux service (an application that is running in the background, such

as abrt) may be assigned a user account . The user account ID for

a service is in the range 0–99 or between the values set by

SYS_UID_MIN and SYS_UID_MAX in /etc/login.defs .

NOTE A system account is created by executing the command useradd

--system <system_account_name> . There are many services that

are not assigned a user account.

Service or system accounts are nonprivileged accounts created by a

system administrator or application, and are sometimes used to restrict

access to configuration or data files. Unlike user accounts, system accounts

cannot log on to the system, do not require a password, do not have

password aging applied, and do not have home directories.

Where Linux User Account Information Is Stored

For purposes of the CompTIA Linux+ exam, you will learn where Linux

stores user configuration files on the local system. Information for users and

groups is stored in the following configuration files:

 /etc/passwd Contains user account information

 /etc/shadow Contains user password and password aging information

 /etc/group Contains a list of groups and their members

Introducing the User Database File /etc/passwd The file

/etc/passwd is an example of a flat-file database. Each line of the file

contains a unique user record. Each record contains seven fields. A colon

(:) is used as a delimiter to separate the fields.

The format for a record in the /etc/passwd file is as follows:

The following example illustrates the fields found in an

/etc/passwd user record:

Here’s what each of the fields contains:

 User_Name The username is a unique word used to identify a user who

has access to the system. The username is supplied by the administrator.

Oftentimes this follows a corporate policy–based convention of

firstname.lastname , or first letter of first name and first seven

letters of last name.

 Password When UNIX was first developed, the user’s encrypted

password was stored in this field. Unfortunately, the /etc/passwd file’s

permissions allowed everyone to read the file, making it easy to hijack and

crack passwords. Passwords are now stored in the high-security

/etc/shadow file, which only the root user can read.

 UID The Linux kernel identifies a user by their user ID, not their

username. A user ID is a numerical identifier assigned to each user and

mapped to their username. Each user ID should be unique. However,

although it is not a secure practice, you can map multiple usernames to the

same user ID.

 GID This field contains the group ID number of the user’s primary

group (a user is allowed to be a member of multiple groups). When a user

creates a file, their primary group ID is assigned as the file’s group owner.

Secondary group memberships are found in /etc/group .

 Comment By default, this field contains the user’s full name. You may

change the information that appears in this field when adding or modifying

the user account. (Traditionally this is known as the GECOS field, which

stands for General Electric Comprehensive Operating Supervisor, a type of

operating system for GE/Honeywell mainframes.)

 Home_Directory This field contains the absolute path to the user’s

home directory. When a user logs in, they automatically are placed at this

directory.

 Default_Shell This field contains the absolute path of the shell

interpreter to use, such as /bin/bash , or a command. Most Linux

systems default to the Bourne-Again Shell or Bash (/bin/bash), but

some users use the Korn shell (/bin/ksh), or C-Shell (/bin/csh).

The CompTIA Linux+ exam covers only the Bash shell.

NOTE System accounts do not require a default shell. You will find these

accounts have either /sbin/nologin or /bin/false in this field.

Both prevent login. /bin/false immediately exits the login process.

/sbin/nologin displays the message found in /etc/nologin and

exits the login process.

Introducing the Protected User Password File

/etc/shadow Encrypted passwords used to reside in the

/etc/passwd file, which is readable by everyone. This left Linux

systems vulnerable to hackers, who could download the passwords and

crack them. Linux developers built the shadow utilities and moved the

passwords to the file /etc/shadow . Now passwords are only visible by

the root user.

The /etc/shadow file is a flat-file database that stores user

passwords and password aging expirations. Each record in

/etc/passwd should have a corresponding record in /etc/shadow .

The format for a record in the /etc/shadow file is as follows:

Here’s an example using the grep command to search for the account

student1 at the beginning of the line using the caret (^) symbol from

the file /etc/shadow :

Here’s what each of the fields contains:

 Username This is the user’s login name.

 Password This field stores the user’s password in encrypted format. If

this field only contains two exclamation points, as shown in Figure 4-1, an

account password has never been assigned.

Figure 4-1 User has no password assigned because of the !!

 Last_Modified This field displays the number of days since January

1, 1970, that the password was last changed. This number is used to

calculate password aging dates.

 Min_Days This field displays the minimum number of days required

before a password can be changed. The default value is specified in

/etc/login.defs .

 Max_Days This field displays the maximum number of days before a

password expires. The default value is specified in /etc/login.defs .

 Warn_Days This field displays the number of days prior to password

expiration the user will be warned of the pending expiration. The default

value is specified in /etc/login.defs .

 Inactive This field displays the number of days after password

expiration the user account will be disabled. The purpose of this field is to

prevent open accounts that are not being used.

During the period between password expiration and the number of inactive

days exceeded, the user may still log on but will be forced to change their

password. After the number of inactive days is exceeded, the account is

disabled and requires an administrator to remediate the situation. The

default INACTIVE value is specified in /etc/default/useradd .

 Expire This field displays the number of days since January 1, 1970,

after which the account will be disabled.

Introducing the Group Database File /etc/group Assume you have

a resource that all the company’s tech writers need to access. By creating a

group called tech_writers and making tech_writers the group

owner of the resource, you can assign the necessary access permissions to

the resource for the group.

Group information is stored in the /etc/group and

/etc/gshadow files. The gshadow file maintains the list of

encrypted group passwords.

The /etc/group file is a flat-file database that contains four fields:

Here’s an example using the egrep command to search for the groups

root or users or tech_writers from the file /etc/group :

Here’s what each of the fields contains:

 Group Specifies the name of the group, such as tech_writers .

 Password Specifies the group password. The x means the group

password is stored in /etc/gshadow .

 GID Specifies the group ID (GID) number of the group.

 UserList Lists the members who are secondary members of the group.

With these new tools in mind, let’s explore how to display your user and

group IDs.

Displaying User and Group IDs

When a user logs on to a system, they are assigned the user ID and group

ID stored in their /etc/passwd record. This user ID is called the UID ,

and the group ID is named the GID . To display the current UID and

GID , use the id command. (There are real versus effective user and

group IDs, which will be discussed in Chapter 6.)

Displaying All Logged-in Users with w and who

The w command displays the user ID (UID) of all logged-on users, what

processes they are executing, and what devices the processes are executing

from.

The who command is similar to the w command but does not display

the processes that are executing.

Switching the User ID with su

The su or “switch user” command allows a user to assume the privileges

of another user by switching their user ID (UID) and group ID (GID).

Non- root users must know the password of the user they are switching

to.

There are two formats for the su command:

 su <username> Changes the current user’s UID , primary group ID,

and home directory.

 su - <username> Does the same, but also reads the new user’s

profile (that is, reads all of the user’s configuration files). In essence, the

“su dash” allows you to become exactly like the new user.

Whenever the su command or su - command executes, your user

ID (UID) and group ID (GID) change to the new user “switched” to. To

view the current UID , execute the command id .

The id command displays the current user’s user ID, group ID, and

secondary groups. The command id <username> displays the user ID,

primary group ID, and secondary groups for the user specified by the

argument <username> .

Figure 4-2 demonstrates use of the id , su , whoami , w , and tty

commands, and the steps are discussed as follows:

Figure 4-2 Demo of the id , su , whoami , w , and tty commands

 You are logged on as the user root (UID 0). The tty command on

line 1 shows that you are displaying from window pseudo-terminal

/dev/pts/0 .

 On line 4, execute the w command to display the username. Line 8 shows

that user root is running the w process on pseudo-terminal

/dev/pts/0 , from X-Window display terminal :0 (details on X-

Window are provided in Chapter 20).

 Verify the UID by executing the id command on line 10.

 On line 13, execute the command su student1 . This changes the user

ID to user student1 (UID 1000).

 When executing the command w and reviewing line 15, you see that you

are logged in as root , but when executing the commands whoami (line

21) and id (line 24), you see the effective user ID is student1 , or

1000 , because of the previous su command (without the “dash”).

 Notice when trying to execute the command useradd on line 27 that you

cannot. Even though you are logged on as root (who should be able to

execute the command useradd), the effective user ID is 1000

(student1), and student1 does not have permissions to execute the

useradd command.

Creating and Managing User Accounts from the Command
Line

System administrators create user accounts with the useradd command.

Once a user’s account is created, the user needs to set a password with the

passwd command. Should a user’s ID or group need to be changed, this

is handled with usermod . Finally, for better security, administrators need

to set password rules with chage . In this section, you will learn details

about

 Provisioning new users with useradd

 Provisioning new workgroups with groupadd

Let’s review how to create and manage user accounts.

Provisioning New Users with useradd

The useradd utility is used to add users to the Linux system. The

useradd command obtains default values initially from

/etc/login.defs and next from /etc/default/useradd .

Entries within the directory /etc/skel/ are used to populate the new

user’s home directory.

The Important useradd Options

Use the following useradd options to customize the user’s home

directory, their login shell, and more:

 -c User comment field. For security reasons, make certain the comment

does not contain personal information.

 -e Specifies the date when the user account will be disabled (-e

YYYY-MM-DD).

 -g Specifies the user’s primary group.

 -G Specifies the user’s secondary group memberships. Administrators

may enter a comma-delimited list of group names or group IDs.

 -d Defines the location of the home directory.

 -m Creates (makes) the home directory. This option is not necessary if the

variable CREATE_HOME in /etc/login.defs is yes .

 -r Specifies that the user being created is a system user. The system user

ID will be in the range specified by SYS_UID_MIN and SYS_UID_MAX

in /etc/login.defs .

 -s Specifies the absolute path to the default shell for the user.

 -u Allows an administrator to manually specify a user ID.

Any required settings not specified on the command line are supplied by

/etc/login.defs and /etc/default/useradd .

Setting Defaults in /etc/default/useradd

The directory /etc/default/ is used to specify default variable

settings. The file /etc/default/useradd contains default variables

used by the command useradd , unless overridden by settings in

/etc/login.defs . To view the values set in

/etc/default/useradd , execute the following command:

To change the value of most of the variables in

/etc/default/useradd , execute the command useradd -Dx .

See Table 4-1 for available options.

Table 4-1 Changing Default Entries in /etc/default/useradd

Setting the Default Location of User Mail The following entries in

/etc/login.defs specify where the user’s mail will be stored. The

value of the variable CREATE_MAIL_SPOOL in

/etc/default/useradd determines if the file will be created when

the user is added.

The following values in /etc/login.defs set the password aging

defaults and the minimum password length unless overridden in the

/etc/pam.d/passwd file:

NOTE The default aging settings are a security risk. It is advisable to

change INACTIVE=30 in /etc/default/useradd . Also change

the default minimum, maximum, and warning days in

/etc/login.defs . The following settings would be more secure:

Building User Consistency with the /etc/skel/ Directory

The /etc/skel/ directory is the default directory that contains the files

and directories copied to a new user’s home directory. You may modify the

files in this directory if you want all new users to have specific files or

settings.

You may also create a skeleton directory for users with similar needs.

Let’s assume you have a specific group that requires specific settings in

/home/<username>/.bash_profile and

/home/<username>/.bashrc , and you have certain scripts

available. Create a directory named /etc/skel_<group_name>/ .

Next, copy all the files in /etc/skel/ to that directory, edit the

appropriate configuration files, and add any additional files desired into the

new directory.

When adding a user for that group, use the option -k

<skel_directory> (for example, useradd -k

/etc/skel_<group_name> <user_name>).

Using passwd to Set a Password The passwd utility allows you or

root to change your password and allows a system administrator to

manage password aging.

As root , you can define how long a password may exist before it must

be changed, specify the number of warning days before the password must

be changed, and specify the minimum number of days a user must wait

before changing their password again to prevent password reuse.

A user can change their own password by executing the command

passwd . Unlike other operating systems where **** or …. might appear

while entering the new password, nothing appears on the terminal in Linux.

User root can change a user’s password by executing the command

passwd <username> . Other passwd options that may be used by

the system administrator include the following:

 -l Locks the user account but does not remove the current password. The

encrypted password of an account locked using passwd -l will have

two exclamation points (!!) preceding the password within

/etc/shadow .

 -u Unlocks a user’s account.

 -n Sets the minimum number of days (MIN_DAYS) required before a

password can be changed.

 -x Sets the maximum number of days (MAX_DAYS) before a password

must be changed.

 -w Sets the number of days prior to password expiration (WARN_DAYS)

when the user will be warned of the pending expiration.

 -i Sets the number of inactive days to wait after a password has expired

before disabling the account.

 -S Displays password aging information. Password aging information

may also be displayed by executing the chage -l <username>

command, as discussed in the next section.

If a user account has an asterisk (*) in the Password field of

/etc/shadow , the account is disabled, as shown in Figure 4-3. If a user

account is disabled, the system administrator must remove the asterisk from

the Password field in /etc/shadow to re-enable the account. User

accounts in the ID range 1–99 that do not require a password will display

an asterisk in this field.

Figure 4-3 Disabled account

You can force a user to change their password at their next logon by

expiring the account using the command passwd -e <username> or

setting the last change date to 0 using the command chage -d 0

<username> .

Changing Password Aging with the chage Command The chage

(change aging) command allows you to view or change a user’s password

aging information.

The command chage -l displays the current user’s aging

information. As a system administrator, running the command chage -l

<username> displays password aging for a specific user.

Let’s look at some other system administrator chage options:

 -d YYYY-MM-DD Changes a user’s last change date

 -m Sets the minimum number of days (MIN_DAYS) required before a

password can be changed

 -M Sets the maximum number of days (MAX_DAYS) before a password

must be changed

 -W Sets the number of days prior to password expiration (WARN_DAYS)

when the user will be warned of the pending expiration

 -I Sets INACTIVE (the number of days to wait after a password has

expired to disable the account)

 -E YYYY-MM-DD Sets the account expiration date

A system administrator may also use the command chage

<username> to change a user’s password aging information. This

command opens a text-based user interface (TUI) that steps through each

aging parameter, displays the current value, and allows the value to be

changed, as shown in Figure 4-4.

Figure 4-4 Using the chage text-based user interface

Modifying User Settings with usermod The usermod command is

used to modify an existing user account. The options for usermod are

similar to those for useradd , with a few noted changes:

 -G <group_name> Removes all of the user’s secondary groups

and replaces them with a new secondary group or comma-delimited list of

secondary groups.

 -aG <group_name> Adds a new secondary group.

 -l Changes the username (logon name).

 -d Changes the location of the user’s home directory.

 -m Moves (renames) the current user’s home directory to the new user’s

name. The following command renames user student2 to user2 :

usermod -l user2 -d /home/user2 -m student2

Deprovisioning Users Using userdel The userdel command is

used to remove a user account. The command userdel <username>

removes a user’s record from /etc/passwd and /etc/shadow , but

their home directory and files remain to later be assigned to a new user and

backed up for archives.

To remove the user’s home directory and mail, execute the command

userdel -r <username> . When deprovisioning a user this way,

make sure to back up their files first!

EXAM TIP If you do not use the -r option with the userdel

command, you must manually delete a user’s home directory, cron jobs,

at jobs, and mail.

Neither userdel nor userdel -r removes any groups from

/etc/group .

You’ll practice managing users in Exercise 4-1.

Exercise 4-1: Managing User Accounts from the Command Line

In this exercise, you will practice creating and modifying user accounts

from the shell prompt of your Linux system. You can perform this exercise

using the virtual machine that comes with this book.

VIDEO Please watch the Exercise 4-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot your Linux system and log in as the root user with a password of

password .

NOTE In secure enterprises, administrators use a feature called sudo or

must check out the root password from security for administrative rights.

The sudo feature is discussed in Chapter 16.

 Open a terminal session.

 Execute the who , whoami , id , echo $HOME , and echo $PATH

commands.

 Open a second terminal and execute the command su student1 .

 Execute the who , whoami , id , echo $HOME , and echo $PATH

commands. What has changed?

 Open a third terminal and execute the command su - student1 .

 Execute the who , whoami , id , echo $HOME , and echo $PATH

commands. Compare the difference in outputs in all three terminals. What

are the differences? Why?

Close the second and third terminals by typing the command exit twice.

In the first terminal, type the clear command.

 Create the user student2 by executing the useradd student2

command.

 Use the following command to view the changes made to these files:

grep ^student2 /etc/passwd /etc/shadow /etc/group

/etc/gshadow

Remember the settings in /etc/default/useradd and

/etc/login.defs ?

Execute the command ls -l /var/spool/mail to determine if

user2 ’s mail file was created.

 Execute the passwd student2 command. Use the password

student2 .

 Execute the grep ^student2 /etc/shadow command. Look at the

Password field. What has changed?

 Press Ctrl-Alt-F2 to open a text terminal. Log in as user

student2 .

 To determine your real user ID, execute the who command.

 Press Alt-F3 to open another text terminal.

 Log in as root , execute the passwd -l student2 command, and

then execute the grep ^student2 /etc/shadow command. What

does the change in the Password field indicate?

 Press Alt-F2 to return to the previous text terminal. Execute the

clear command. Notice that even though you have prevented

student2 from logging in, student2 can still execute commands.

 Type the exit command to log out and then try to log back in as

student2 . Notice you cannot log in because the account is locked.

 Press Alt-F3 to change to the terminal where you are logged in as

root .

 Execute the su - student2 command.

 Verify your effective user ID using the whoami command. Then execute

id so you can see the difference in output between the two commands. If

you execute the who command, you will see your real user ID is root .

 Try to execute the passwd -u student2 command. Why does the

command fail?

 Execute the exit and whoami commands. Now execute the passwd

-u student2 command.

 Go back to the second text terminal (press Alt-F2) and try to log on as

student2 .

 As student2, view your password aging by executing the passwd -S and

chage -l student2 commands. Notice only root can execute the

passwd command.

 Return to the GUI by pressing Alt-F1 .

 Type chage student2 . The text user interface opens. Change

INACTIVE to 0 . What does that do? Use the command grep

^student2 /etc/shadow to view the changes.

 Use the command chage -m 37 -M 45 -W 7 -I 14 student2

to change the MIN_DAYS (37), MAX_DAYS (45), WARN_DAYS (7), and

INACTIVE (14) for user student2 . Now view the changes by

executing the grep ^student2 /etc/shadow command.

 Create the user student3 . This user’s default group should be the group

specified in /etc/default/useradd or /etc/login.defs . Use

the command id student3 to make certain student3 ’s primary

group is 1003 because /etc/login.defs defines

USERGROUPS_ENAB=yes .

 Add the group student1 as a secondary group for student3 by

executing the command usermod -G student1 student3 and

type the groups student3 command. This will display which groups

student3 is a member of.

 Add the group 100 (users) as a secondary group for student3 using

the command usermod -G 100 student3 and then type the

groups student3 command. Notice that the group student1 is no

longer a secondary group. Using the -G option overwrote all the existing

secondary groups. Execute the command usermod -aG student1

student3 and then execute the groups student3 command. The

-a “appends” the group to the secondary group list.

 Delete user student2 using the userdel student2 command.

Then execute

Notice that student2 ’s records in /etc/passwd and

/etc/shadow have been removed, but student2 ’s mail file remains.

 Delete user student3 using the userdel -r student3

command. Execute

Notice student3 ’s records in /etc/passwd and /etc/shadow

have been removed as well as student3 ’s mail file in

/var/spool/mail .

Now that you know how to manage users, next we’ll discuss how to

manage groups.

Provisioning New Workgroups with groupadd

Linux uses groups to provide common access to a system resource for

multiple users. In this section, we’re going to discuss how Linux groups

work and how to manage groups from the command line.

Managing Groups from the Command Line

As with users, groups can also be managed with either command-line or

graphical tools. For example, the User Manager can be used to create,

modify, and delete groups, as well as user accounts, on the Linux system.

However, graphical tools are not listed in the CompTIA Linux+ exam

objectives, so we will focus on managing groups from the command-line

interface (CLI). We will review the following tools:

 groupadd

 gpasswd

 groupmod

 groupdel

Let’s begin by looking at groupadd .

Provisioning a New Workgroup Using groupadd

As you can probably guess from its name, the groupadd utility is used to

add groups to the Linux system. The syntax for using groupadd at the

shell prompt is relatively simple. Just enter groupadd <options>

< groupname>. For example, to add a group named dbusers , enter

groupadd dbusers at the shell prompt.

When using groupadd , you can use the following options:

 -g Specifies a GID for the new group. As with users, it is not necessary

to specify a group ID, as the system will automatically assign one.

 -r Specifies that the group being created is a system group.

Setting the Group Password with gpasswd The gpasswd command

is used to manage the files /etc/group and /etc/gshadow . This

command may be executed by a system administrator or a group

administrator.

To assign a group administrator, a system administrator or group

administrator should execute the gpasswd -A <username>

command.

A system or group administrator may use any of the following

gpasswd options:

 -a <username> Adds a user to the group

 -d <username> Deletes a user from the group

 -r Removes the group password

Changing Workgroup Settings with groupmod The groupmod

command is used to modify group information using the following options:

 -g Changes the group’s GID number

 -n Changes the group name

Deprovisioning the Workgroup with groupdel To delete an existing

group from the system, use the groupdel command at the shell prompt.

For example, to delete the dbusers group, enter the groupdel

dbusers command.

Before deleting a group, make certain the users’ access to files and

directories is not compromised.

You’ll practice managing groups in Exercise 4-2.

Exercise 4-2: Managing Groups from the Command Line

In this exercise, you will practice creating and modifying groups from the

shell prompt of your Linux system. You can perform this exercise using the

virtual machine that comes with this book.

VIDEO Please watch the Exercise 4-2 video for a demonstration on how

to perform this task.

Suppose your company is putting together a new research and

development team that will be using the Linux system. You need to create a

new group for users who will be members of this team. To do this, complete

the following steps:

 Log on to the system as the user root .

 Create a new group named research by executing the groupadd

research command.

 Add the group research as a secondary group of student1 by

executing the command usermod -aG research student1 .

 View the members of the research group by executing the command

grep research /etc/group .

 View all the secondary groups student1 is a member of by executing

the command grep student1 /etc/group .

 View all the groups student1 belongs to by executing the groups

student1 command.

 Delete the group research by executing the groupdel research

command. Verify the group has been removed by executing the grep

research /etc/group command.

Chapter Review

In this chapter, we reviewed the user configuration files, how to use user

and group management commands and configuration files, and how to

temporarily change user and group IDs. Here are some key takeaways from

this chapter:

 To authenticate to a system, a user must supply a username and password.

 User home directories are created in /home by default.

 The root user’s home directory is /root .

 Every Linux user account should have a unique user ID (UID) number

assigned to it.

 The root user’s UID is 0 .

 The starting UID for standard users is 1000 .

 Use the su command to temporarily switch the user ID, primary group ID,

and home directory.

 To temporarily log on as another user and use their profile, execute the su

- <username> command.

 Use the id command to view a user’s effective user ID.

 With local authentication, user accounts are stored in /etc/passwd and

/etc/shadow .

 The /etc/passwd file stores user account information.

 The /etc/shadow file stores encrypted passwords and password aging

information.

 You can use the useradd utility to provision users onto a Linux system.

 When used without any options, useradd uses system defaults defined

in /etc/login.defs and /etc/default/useradd to create

user accounts.

 Use the passwd utility to set a user’s password.

 Use the usermod utility to modify an existing user account.

 Use the userdel utility to deprovision an existing user account.

 By default, userdel does not remove a user’s home directory, cron

and at jobs, and mail unless you specify the -r option with the

command.

 Group accounts are stored in /etc/group .

 Use the groupadd utility to provision a new group to the system.

 Use the usermod utility to add or remove users to or from an existing

group.

 Use the groupdel utility to deprovision an existing group.

Questions

 Which files contain global user configuration settings for a user with

/bin/bash as their default shell? (Choose two.)

 /etc/passwd

/etc/profile

 ~/.bash_profile

 /etc/group

/etc/bashrc

~/.bashrc

 A user has a primary group and may be a member of more than one

secondary group. Which file would you look in to find a user’s secondary

groups?

 /etc/passwd

/etc/profile

 ~/.bash_profile

 /etc/group

 Which entries in an /etc/passwd record will prevent a user from

logging on to the system? (Choose two.)

 /bin/bash

/bin/false

 /sbin/nologin

 /bin/nologin

 Which entry in an /etc/shadow record’s Password field will

indicate a user password has not been set for that user?

 !!

NP

 LK

 !

 A user cannot log on. Their Password field in /etc/shadow

contains !!<encrypted_password> . What action would fix this

problem? (Choose two.)

 The user should change their password.

An administrator should execute the command passwd -u

<user_name> .

 An administrator should execute the command chage -u

<user_name> .

 An administrator should execute the command usermod -U

<user_name> .

 Which file contains the default password aging values used when adding a

user?

 /etc/default/useradd

/etc/login.defs

 /etc/skel

 /etc/profile

 You are adding a user. The value stored in the variable

USERGROUPS_ENAB in /etc/login.defs is yes . You do not

wish to create a new group, but want the user’s primary group to be the

same as the value (100) stored in the GROUP variable in

/etc/default/useradd . Which of the following commands would

accomplish this? (Choose two.)

 Creating the user and then executing usermod -g <username>

useradd -n <username>

 useradd -G 100 <username>

 useradd -g 100 <username>

 A user cannot log on. You wish to view the password aging information for

that user. What command would you execute? (Choose two.)

 chage -S <username>

passwd -S <username>

 chage -l <username>

 passwd -l <username>

 You want the default editor for all new users to be nano . Which file

would you edit?

 /etc/default/useradd

/etc/login.defs

 /etc/profile

 /etc/skel/.bash_profile

 A user’s password expired five days ago. The value of INACTIVE is 14 .

What can the user do?

 Nothing, the account has been disabled.

Log on normally.

 Log on, but be ready to change their password.

 Contact the system administrator to reset the account.

 A user’s password expired five days ago. The value of INACTIVE is 0 .

What can the user do?

 Nothing, the account has been disabled.

Log on normally.

 Log on, but be ready to change their password.

 Contact the system administrator to reset the account.

 A user with a user ID of 3 has an asterisk in their Password field in

/etc/shadow . What does this indicate?

 The account has been disabled.

This is a system account and does not require a password.

 This is a system application account and does not require a password.

 This a system account that can only be called by root and does not

require a password.

 You are changing the logon name for user student1 to student3 .

What is the most appropriate command?

 usermod -l student1 student3

usermod -l student3 student1

 usermod -l student3 -d /home/student3 student1

 usermod -l student3 -d /home/student3 -m student1

 What command will only delete the user record for student3 in

/etc/passwd and /etc/shadow ?

 userdel -r student3

userdel student3

 rm student3

 rm -r student3

 You have removed the user records for student3 in /etc/passwd

and /etc/shadow but did not remove the home directory, cron jobs,

at jobs, and mail associated with student3 . What command will

best do this?

 userdel -r student3

userdel -rf student2

 None; the files must be removed manually.

 \rm -r /home/student3

 You are logged in as student1 . You execute the command su

student2 . What commands will display who you have logged on to the

system as? (Choose two.)

 id

who

 w

 whoami

Answers

 B, E. /etc/profile and /etc/bashrc are generic (global)

configuration files applied to all users whose default shell is the Bash shell.

/etc/profile would also be read for users whose default shell is the

Bourne or Korn shell.

 D. The file /etc/group would contain a user’s secondary group

information. A user’s primary group information would be stored in

/etc/passwd .

 B, C. The entries /bin/false and /sbin/nologin will prevent a

user from logging on.

 A. If the Password field of a user account in the file /etc/shadow

only contains two exclamation points, a password has never been set.

 B, D. The two exclamation points preceding the password indicate the

account has been locked by the command passwd -l . Either command

passwd -u or usermod -U will unlock the account.

 B. The /etc/login.defs file contains the default password aging

values.

 B, D. The command useradd -n would negate the setting in

/etc/login.defs and force the default in

/etc/default/useradd to be used. The command usermod -g

100 would set the primary group ID to 100. Although answer A would

work, the question specifies that the administrator does not wish to create a

new group. The command useradd <username> would create a new

group.

 B, C. The commands passwd -S <username> and chage -l

<username> would display the password aging for a user.

 D. Editing the file /etc/skel/.bash_profile would cause any

changes to the file to be propagated to new users.

 C. The user may log on, but will be forced to change their password.

 D. An INACTIVE value of 0 automatically disables the account when

the password expires, so there is nothing the user can do to fix the problem.

A system administrator will have to manually remove the asterisk from the

Password field in /etc/shadow .

 B. The user ID indicates this is a system account that does not require a

password.

 D. When modifying a username, you must specify the location of the user’s

home directory (-d <home_directory>) and move the contents from

the old username’s directory to the new username’s home directory (-m).

 B. To remove a user record from /etc/passwd and /etc/shadow ,

use the userdel <username> command.

 C. The files must be removed manually.

 B, C. The commands who and w will display the user’s real UID

(RUID) or who they logged in as. The commands id (answer A) and

whoami (answer D) will display their effective user ID (EUID) or who

they su ’d (switched user) as.

CHAPTER 5
Managing Linux Files and Directories

In this chapter, you will learn about

 The Filesystem Hierarchy Standard (FHS)

 Managing Linux files

 Finding files in the Linux filesystem

 Understanding commands and precedence

 Finding content within files

The datasets looked so good that we realized this will probably go into

people’s arms.

—Kizzmekia S. Corbett, National Institutes of Health

In this chapter, you get to know the Linux filesystem, including the

hierarchical structure of the Linux filesystem and Linux file types. Then

you will work with files and directories. Let’s begin by discussing the role

of the filesystem.

Understanding the Filesystem Hierarchy Standard

Linux stores data on physical hard disks, which in many cases are

subdivided into partitions. Storing data on a partition requires a method for

managing how the data is stored and retrieved. A filesystem controls how

data is managed on a hard disk. Figure 5-1 shows one hard disk with three

partitions. Each partition has a filesystem on which data is stored. What

data is stored on a disk or partition and what filesystems are used to manage

the data are determined as part of the system design process.

Figure 5-1 Filesystems and partitions

The logical location of a directory has no relationship to where the data

is physically stored. A hierarchy is a method of organizing objects based on

some classification. The Filesystem Hierarchy Standard (FHS) defines a

suggested logical location of directories and files on Linux (and UNIX)

distributions. These definitions include what should be contained in specific

directories and files. Figure 5-2 shows an example of this structure.

Currently, the Linux Foundation manages the FHS

(https://refspecs.linuxfoundation.org/fhs.shtml).

Figure 5-2 Directory structure

Let’s review the purpose of some of these directories:

 / The root directory, or top-level directory (pronounced slash directory,

and the parent to all other files and directories)

 /bin Contains user commands, and can be linked to /usr/bin

 /boot Contains files required to boot the system

 /dev Contains special device driver files for hardware devices

https://refspecs.linuxfoundation.org/fhs.shtml

 /etc Contains global configuration files

 /lib Contains system library files, also known as shared objects

 /mnt A mount point for temporarily mounted filesystems

 /media A mount point for removable media, such as DVD and USB

drives

 /opt Directory intended for installation of third-party applications

 /sbin Contains system binaries used by root for booting or repairing the

kernel; linked to /usr/sbin

 /tmp Directory for temporary files; known as a pseudo-filesystem

because it resides in memory and, optionally, swap space

 /usr A suite of shareable, read-only UNIX system resources

 /var Contains files that vary in size (e.g., log files, e-mail files, and

printing files)

 /home Contains home directories for user accounts

 /root The user root ’s home directory (not to be confused with the /

directory)

 /run Another pseudo-filesystem (resides on memory) and contains

system information gathered from boot time forward; cleared at the start of

the boot process

 /srv Contains data for services (e.g., HTTP and FTP) running on the

server

 /sys Provides device, driver, and some kernel information

 /proc Another pseudo-filesystem that contains process and hardware

information

Frankly, files can be placed anywhere on a Linux system. Executable

files can be placed in /etc , log files can be placed in /usr/lib , and

so on, but as a Linux administrator, you do not want to do this. This makes

it very difficult for other Linux administrators to manage the system in case

you get promoted or change jobs. It is important to follow the FHS.

At this stage in your exam preparation studies, you must learn some

Linux basics which include

 Navigating the Linux filesystem

 Viewing directory contents with ls

Let’s first learn about maneuvering through the Linux filesystem.

Navigating the Linux Filesystem

As you work with the Linux filesystem from the shell prompt, one of the

most common tasks to perform is maneuvering through the various

directories on your storage devices. Your Linux system provides the

following shell commands to do this:

 Print the current working directory with pwd

 Change directories using cd

Print the Current Working Directory with pwd

The pwd (print working directory) command displays the absolute path of

the current directory on the terminal. The absolute path to a file is the path

from the root (/) directory. Figure 5-3 displays the absolute path to file2

as /dir1/file2 . An absolute path always begins with / .

Figure 5-3 Absolute path

To display the absolute path of the current directory, execute the

command pwd . Here’s an example:

Change Directories with cd

The cd (change directory) command is used to change from your current

working directory to another directory. When specifying a directory, use the

absolute or relative path. The relative path specifies the path to a directory

from the current directory and never starts with a leading / . In Figure 5-4,

the current working directory is dira . The relative path to fileb is

dirb/fileb .

Figure 5-4 Relative path

The absolute path to fileb is /dira/dirb/fileb . To change the

directory to the directory that contains fileb (dirb), you could

execute the command using the relative method, cd dirb , or the

absolute method, cd /dira/dirb .

NOTE Remember ~ represents a user’s home directory. For example,

cd ~ takes the user Paul to his home directory /home/paul . Because

~ always starts with a leading / , it is also considered an absolute path

name.

Executing the command cd without an argument changes the current

working directory to your home directory. Executing the command cd ~

also moves you to your home directory.

Executing the command cd ~<username> changes your current

working directory to the home directory of the user specified by the

argument <username> as long as there is permission to enter the home

directory. The command cd ~student1 changes the current working

directory to user student1 ’s home directory, /home/student1 .

Finally, executing the command cd .. (“cd dot dot”) changes your

current working directory to the parent directory, because .. means parent

directory. The . or “dot” means the current directory, so cd . keeps

you in the directory that you are currently in. This is not very useful, but

uses of “dot” will be discussed in Chapter 10.

Viewing Directory Contents with ls

The ls command (lowercase letters l and s) shows a list of filenames and

directories stored in the current directory. Here’s an example:

If you provide an absolute path to a directory, ls displays the contents

of the directory, as shown here:

When working with ls , you can use a variety of options to customize

how it works. Here are some of these options:

 -a Displays all files, including hidden files. Hidden filenames are

prefixed with a period or “dot.” Many configuration files are hidden files.

The thinking of the Linux developers was that if nonprivileged users could

not easily see these files, they would not change them.

In the following example, the ls -a command has been issued in the

/home/student1 directory:

If you provide the filename of a hidden file (for example, ls -l

.exrc), the -a option is not necessary.

 -l Displays a long listing of the directory contents. The first line shows

total space, in blocks, used in the directory. The other lines display file

properties showing the permissions, number of links, file owner, group

owner, file size in bytes, modification date, and filename. An example is

shown here:

 -R Displays directory contents recursively; that is, it displays the contents

of the current directory as well as the contents of all subdirectories.

Depending on the number of entries in the directory, you may want to

append | more after using this option, by running ls -R /etc |

more . This causes the more utility to pause and display one page of

output at a time. Press the Spacebar to see the next page, and press q

to quit.

 -i Displays the inode a filename belongs to. This is demonstrated a bit

later in the “Soft and Hard Links” section.

EXAM TIP Knowledge of ls options -l , -i , -R , and -a is vital

to passing the CompTIA Linux+ exam. Make sure you know that the -l

option lists the permissions, number of links, user and group owners, file

size, modification time, and filename.

Let’s practice navigating the filesystem in Exercise 5-1.

Exercise 5-1: Navigating the Filesystem

In this exercise, practice using shell commands to navigate the Linux

filesystem.

VIDEO Please watch the Exercise 5-1 video for a demonstration on how

to perform this task.

For this exercise, log on to the virtual machine provided with the book as

user root (password password) and follow these steps:

 Open a terminal session.

 Assuming you have just logged on, what should be your current working

directory? Use the pwd command to verify your current working directory.

If you are not in your current working directory, execute the cd command

to return to your home directory. Test the results with the pwd command.

 Change your current working directory to user student1 ’s home

directory by using one of the following commands:

 cd ~student1

 cd /home/student1

 Execute the command ls and then the command ls -a . What is the

difference in the output? Why?

 Execute the commands in step 4 again, but this time display the file’s

properties by using the command -l .

 Use an absolute path to change your current working directory to the

pam.d subdirectory in /etc by executing the command cd

/etc/pam.d . Verify you are in the correct directory.

 Move up to the parent directory by executing the command cd .. and

verify you are in the /etc/ directory.

 Return to your home directory and again verify you are in the correct

directory.

Answer to Exercise 5-1

Step 4 Executing the command cd returns you to your home directory,

which contains many configuration files and directories that you will not

see if you execute the command ls ; they become visible if you execute

the command ls -a .

Managing Linux Files

Everything in Linux is referenced by a file. Even a directory is a file. We

now investigate the types of Linux files and how to manage them by

discussing

 Files, filenames, and inodes

 Creating and validating files with touch and stat

 Soft and hard links

 Creating new directories with mkdir

 Determining the file type

 Viewing file contents

 Deleting files

 Copying and moving files

Files, Filenames, and Inodes

Linux files consist of a filename, inode, and data block(s). When a file is

created, it is given a name by the user or application and assigned a unique

inode number (index number) by the filesystem. The operating system uses

the inode number, not the filename, to access the file and its information.

Filenames and inode numbers are kept in directory files. If the contents

of a directory file could be displayed, for example, by running cat

/home/aria/files, it would appear as shown in Figure 5-5; in this

example, files Funutation.odp , BusinessPlan.odt , and

zbest.txt are in the /home/aria/files directory.

Figure 5-5 Example contents of a directory file

A Linux filename may contain up to 255 characters, and must not

contain a forward slash or null character. A filename may contain

metacharacters (for example, file1*), but this is not advisable. Also,

file1 , File1 , and FILE1 are three different files because Linux is

case sensitive.

The Linux operating system ignores extensions

but allows applications to recognize them. For

example, mfc70.txt indicates a text file for the

gedit utility. By default, LibreOffice, the free and open source

office suite, stores files using Open Document Format and uses Open

Document filenames to distinguish its files. For example, the suffix .odt

indicates a word processor file, .ods a spreadsheet, and .odp a

presentation document.

You can append multiple suffixes to filenames to make searching for

files easier. The filename fstab.12232024.abc could indicate that

this is a copy of the file /etc/fstab made on December 23, 2024, by a

user with the initials abc.

If you intend to share files among multiple operating systems, make sure

that your filenames follow the rules for all operating systems. For example,

if you create the files version1.txt and Version1.txt on a

Linux system in the same directory, Linux will treat them as separate files.

But, if those two files are shared with a Windows system, one of the files

will be overwritten because Windows is not case sensitive.

Creating and Validating Files with touch and stat

Creating a new file can be accomplished by executing the touch

command. Assuming the file filea does not exist, the command touch

filea will create an empty file (0 bytes) named filea :

Three file timestamps—access, modification, and change—are part of a

file’s metadata. The access timestamp is updated, by default, each time the

file contents are read. The modification timestamp is updated each time the

contents are changed. The change timestamp is updated whenever the file’s

metadata (for example, ownership or permissions) is changed. The touch

command may be used to modify timestamps. If a file exists, you can

change its modification time by executing the command touch

<filename> .

To view the timestamps and inode numbers of the file, use the stat

command, as shown here:

The stat command also lists the file’s birth, permissions, number of

links, device, user ID, group ID, file size, and SELinux settings. SELinux is

discussed in Chapter 16.

EXAM TIP On ext -based filesystems such as ext3 and ext4 , all

inodes are created when the filesystem is built, so it is possible to run out of

inodes even though there is plenty of disk space available! XFS filesystems

support dynamic inode allocation, building inodes as needed, so they do not

suffer from inode exhaustion issues.

Soft and Hard Links

A link is a method of referring to data stored in an inode or another file.

This allows us to change the data in one file and have that change reflected

in other filenames.

Prior to discussing links, however, let’s look at how files are stored on

most filesystems. A file’s metadata is stored in an inode. Inodes contain all

the information about a file, such as the permissions, number of links, user

and group owners, file size, timestamps, and data pointers, but not the

filename, as shown in Figure 5-6.

Figure 5-6 Structure of an inode

When a file is created, it is assigned an inode number from a list of

available inode numbers in the filesystem. When a user enters a filename,

the operating system finds the inode number associated with that filename

from a directory file. Then the data is accessed from the file’s inode.

For our discussion, the term source indicates the original file and the

term destination indicates the file being created.

Creating and Manipulating Hard Links with ln

A hard link associates the file’s name with the file’s inode. To create

additional hard links, use the ln command (lowercase letters l and n).

Hard links only work when used within the same filesystem. Assume that

zbest.txt is linked to inode number 61583 inside the

/home/aria/files directory. After running the command ln

zbest.txt zlink.txt , inode number 61583 now has two links,

zbest.txt and zlink.txt , as shown in Figure 5-7.

Figure 5-7 An inode with two links

In Figure 5-8, running ls -il z* displays the inode number

61583 and other properties of the files zbest.txt and zlink.txt .

Notice the circled number; this indicates the number of filenames

referencing this file’s inode number. It incremented from 1 to 2 because

inode 61583 has two filenames, zbest.txt and zlink.txt .

Figure 5-8 Creating hard links

In the last command, the file zbest.txt is removed using the \rm

zbest.txt command. The file zlink.txt can still access its data

because its filename is still associated with inode 61583 . No disk space is

reclaimed due to the removal of zbest.txt because there is still one

link to the inode, filename zlink.txt . Once zlink.txt is deleted,

then 43 bytes of data will be reclaimed by the operating system.

EXAM TIP You could also use the unlink zbest.txt command to

remove zbest.txt .

Creating and Manipulating Soft Links

A symbolic link, also called a soft link, can reference a file in the same

filesystem, another filesystem, directories, or even across the network!

Unlike the hard link, each symbolic link file has its own inode. The data

within the “symlink” contains the filename it is linked to, similar to a

shortcut in macOS or Windows computers (see Figure 5-9).

Figure 5-9 Contents of a soft link

To create a soft link, run ln with the -s option as follows:

ln -s <source_file> <destination_file>

Notice the output of the ls -il command in Figure 5-10. The files

zbest.txt and zlink.txt are hard linked because they are linked

to the same inode, and the link count is 2 .

Figure 5-10 Soft linking a file

Next, a soft link is created, named symlink.txt , by running the

following command:

ln -s zbest.txt symlink.txt

Notice the file type and properties of symlink.txt shown as

lrwxrwxrwx . The lowercase l indicates the file is a soft link, and the

permissions rwxrwxrwx grant all permissions to all users when

accessing the file. The permissions to a soft link are based on the file it is

linked to, so these are overridden and become rw-r—r-- , the

zbest.txt permissions.

Also notice that the filename has an arrow (->) pointing to the file it is

linked to, zbest.txt . The contents of the soft link contain the name of

the file it is referencing. Since zbest.txt is nine characters, the file size

is 9 bytes, not the size of zbest.txt .

Finally, notice that the link count remains 2 and does not change to 3 .

This is because a soft link creates its own inode instead of adding another

filename to the current inode. The key difference is that hard links point to

an inode number and soft links point to a filename.

NOTE You can also use the readlink command to determine what file

a symbolic link is linked to, as follows: readlink symlink.txt

To remove a symbolic link, run either rm

<destination_link_file_name> or unlink

<destination_link_file_name> . Removing symlink.txt

with rm symlink.txt (or unlink symlink.txt) has no effect

other than losing the symbolic link. But if you remove the source file with

rm zbest.txt , the system prints cat: symlink.txt : No such

file or directory after you run cat symlink.txt , as shown

in Figure 5-11, because zbest.txt no longer exists.

Figure 5-11 Removing and adding destination to soft link

The link works again after re-creating zbest.txt . The data is not the

same because a new zbest.txt file was created, but zbest.txt

could have been relinked to zlink.txt . As far as the file

symlink.txt goes, it points to zbest.txt no matter what data it

contains, as shown in the last five lines of Figure 5-11.

Using Soft Links Is More Common than Hard Links

Hard links are easier to find on a filesystem compared to soft (symbolic)

links. The find command with the -inum option searches for files by

inode number, as discussed in the “Finding Files in the Linux Filesystem”

section later in this chapter. But symbolic links are used more frequently on

Linux systems because they can link to anything, including directories and

network files. Hard links work properly only if the files share the same

filesystem.

Creating New Directories with mkdir

The mkdir (make directory) command is used to create a directory. In the

following example, the command mkdir MyDir has been executed in

student1 ’s home directory:

You can use an absolute or relative path to create a directory somewhere

other than the current directory. For example, to create a new directory

named backup in the /tmp directory, enter mkdir /tmp/backup

at the shell prompt.

The mkdir -p command creates a directory tree. For example,

running the command mkdir -p ~/temp/backups/daily creates

the temp directory, then creates the subdirectory backup , and finally

creates the subdirectory daily .

NOTE Use the tree command to list contents of directory paths. This

will display the parent directories and their children.

Determining the File Type

The first character of the output of the ls -l command is a code that

indicates the file type, as shown in Table 5-1.

Table 5-1 File Type Codes

Looking at lines 1 through 3 in Figure 5-12, you can see each file is a

plain text file. This information tells nothing about the detailed contents of

the files.

Figure 5-12 Plain text file type

When most files are created, the first several bytes of the file contain the

file signature, or magic number, which indicates the type of content stored

in the file.

The file command compares the file’s magic number with databases

of file signatures contained in /usr/share/misc/magic ,

/usr/share/misc/magic.mgc , and /etc/magic to determine

the file type.

Figure 5-13 displays sample outputs of the file command. Notice

how the file command provides a description of the content of the file

because it uses the magic number to determine the type of content stored in

the file.

Figure 5-13 The file command

Viewing File Contents

You may find that you often want to quickly view a text file onscreen

without loading the vi text editor. Linux provides a variety of command-

line tools to do this, including the following:

 cat The cat command is used to display plain text. The command

cat < filename> displays the specified text file onscreen. For example, to

view the contents of /etc/passwd , execute the command cat

/etc/passwd .

 less The less command is called a pager. It may be used to manage

how text is displayed and how the cursor is moved with a file. The less

command automatically pauses a long text file one page at a time. You can

use the Spacebar , Page Up , Page Down , Left Arrow , and

Right Arrow keys to navigate around the output.

 more Like the less command, the more command also paginates

through a file. Use the same keyboard keys to navigate around the output.

Use the q key to quit.

 head By default, the head command displays the first 10 lines of a file.

The command head - n displays the first n number of lines of a file.

 tail The tail command is used to display the last 10 lines of a text

file onscreen. The command tail - n displays the last n lines of a file.

The tail command is particularly useful when displaying a log file

onscreen. When viewing a log file, you usually need to see the end of the

file only and don’t care about log entries made several days or weeks ago.

Use tail to see just the last few log entries added to the end of the file.

The tail command also includes the -f option, which is very useful to

follow, or monitor, a file. As new content is updated to the file, new lines

are displayed onscreen. System administrators often run the command

tail -f /var/log/messages to monitor the file for new entries.

Deleting Files

There will be times when you need to delete an

existing file from the Linux filesystem. To delete

a file, you must have write and execute permissions on

the directory the file is located in and execute

pe rmissions on any parent directories.

To delete a file, simply enter rm <filename> . In the following

example, the myfile.txt file is deleted using the rm command:

In many distributions, the rm command is aliased to rm -i . The -i

option means interactive, which requires user confirmation prior to deleting

a file. To override the rm -i alias, put a \ (backslash) in front of rm ;

for example, \rm <filename> .

The recursive option, -R or -r , is used to recursively remove the

directory tree until all directories, subdirectories, and files are deleted.

Execute rm -R Directory to delete the directory, subdirectories, and

files.

EXAM TIP You can also use the rmdir command to delete a directory,

but this only works when the directory is already empty. rm -r works

whether the directory is empty or not.

Copying and Moving Files

In addition to creating and deleting files in the Linux filesystem, you can

also copy and move them. To copy or move a file, you must have read

permissions to the file, execute permissions to the directory the file is

located in, execute permissions to any parent directories, and write and

execute permissions to the destination directory.

Copying Files with the cp Command

The cp (copy) command makes a duplicate of a file or directory in the

Linux filesystem. The command cp <source> <destination> is

used to copy a file. For example, running the command cp file1

file2 would make a duplicate of file1 named file2 . The

ownership of a copied file is changed to the user who copied the file. For

example, if user root copied a file owned by student1 , the copied

file would be owned by user root .

Multiple files may be copied as long as the destination is a directory (for

example, cp file1 file2 directory-a).

The cp option -i prevents a user from copying a file to an existing

file. In many systems, the command cp -i is a default alias to the cp

command so that users don’t accidently overwrite important files.

The recursive option, -R or -r , is used to recursively copy the

directory tree until all directories, subdirectories, and files are copied to the

destination directory. For example, execute cp -R DirectoryA

DirectoryB to copy DirectoryA to DirectoryB .

Renaming Files with the mv Command

The mv command is used to move or rename a file or directory. For

example, to rename mvtest1 to mvtest2 , execute the command mv

mvtest1 mvtest2 . Notice the inode numbers in Figure 5-14; the new

name linked to inode 1072491 is now mvtest2 .

Figure 5-14 The mv command

If the source and destination files are not in the same filesystem, the mv

command copies the source to the new location and then deletes the

original.

The recursive option, -R or -r , is used to recursively move the

directory tree until all directories, subdirectories, and files are copied to the

destination directory. For example, execute mv -R DirectoryA

DirectoryB to move DirectoryA to DirectoryB .

Exercise 5-2: Managing Files and Directories

In this exercise, practice creating and viewing the properties of files and

directories and moving between directories.

VIDEO Please watch the Exercise 5-2 video for a demonstration on how

to perform this task.

For this exercise, log on to the virtual machine provided with the book as

user student1 (password student1) and then follow these steps:

 Open a terminal session.

 Verify that you are in student1 ’s home directory. If not, change your

current working directory to user student1 ’s home directory by

executing the cd ~ command.

 Execute the touch touchtest; alias rm='rm -i' command.

 Create the subdirectory cars relative to your home directory by

executing the mkdir cars command.

 Verify the directory has been created by executing the ls -ld cars

command.

 Execute the ls -lR cars command. Notice there are no subdirectories.

 Execute the rmdir cars command.

 Execute the ls -ld cars command. Notice the directory has been

removed.

 Create the subdirectory pastry relative to your home directory by

executing the mkdir pastry command.

 Verify the directory has been created by executing the ls -ld pastry

command.

 Execute the ls -lR pastry command. Notice there are no

subdirectories.

 Execute the mkdir -p pastry/pies/cakes command.

 Execute the command ls -lR pastry to view the new subdirectories.

 Try to use the rmdir pastry command to remove the pastry

directory. Why did this command not work?

 Execute the \rm -r pastry command. Did the directories delete?

 Using vi , create the file filea with the content This is filea .

Start vi by executing the vi filea command.

 Place vi in insert mode by pressing the i key.

Type This is filea .

 Save the file and exit vi by pressing Esc ZZ .

Type the command ls filea to verify the file has been created.

Type cat filea to verify the contents of the file.

 Create a symbolic link where the source file is filea and the destination

file is fileb by executing the ln -s filea fileb command.

 Test the results of the preceding command by executing the ls -il

file[ab] command. Notice the file types: filea is an ASCII file and

fileb is a symbolic link. Look at the inode numbers of the files. Are

they the same or different? Why?

 Execute the command cat filea; cat fileb to view the content

of the files. Was the output what you expected?

 Create a hard link where filea is the source and filec is the

destination by executing the ln filea filec command.

 Execute the command cat filea; cat fileb; cat filec to

view the contents of the files.

 Test the results of the command executed in step 20 by executing the ls -

il file[a-c] command. Look at the properties of filea and

filec . Notice the files have the same inode and the number of links

sharing the inode is 2 . Why?

 Remove filea by executing the \rm filea command.

 Execute the command ls -l file[a-c] and examine the output.

Notice the number of files sharing the inode in filec and notice the

broken link of fileb .

 Use the vi command to create a new filea with the content This

is new filea .

 Execute the ls -il file[a-c] command. Notice the symbolic link is

no longer broken. Why?

 Execute the cat filea; cat fileb; cat filec command. Is

the output what you expected?

 Execute the ls -l fileb and file fileb commands.

 Execute the ls /var/lib/mlocate/mlocate.db and file

/var/lib/mlocate/mlocate.db commands.

 Execute the ls -il touchtest command. Notice the timestamp.

Execute the command touch touchtest and view the timestamp

again.

 Use the touch cpytest command to create the file cpytest .

 Execute the ls -l cpytest command. Notice the file is owned by the

user student1 .

 Execute the command su - and press the Enter key. When asked for

root ’s password, enter password .

 Execute the id or whoami command to ensure your effective user ID is

0 .

 Execute the command cp ~student1/cpytest . (the period after

the filename cpytest means “current directory”). This command copies

the file cpytest from student1 ’s home directory to root ’s home

directory.

 Execute the ls -l cpytest command. Notice that root owns the

file.

 Execute the exit command.

 Execute the command touch cpytest2 and verify the file was

created.

 Execute the alias | grep cp command. You should see alias

cp='cp -i' . If it is not there, execute the alias cp='cp -i'

command.

 Execute the cp cpytest2 cpytest command. You should receive an

error because the -i option will not allow you to overwrite an existing

file. Try the command again by negating the alias using the backslash as

follows: \cp cpytest2 cpytest

 Execute the ls -il cpytest2 command. Notice and write down the

inode number using pen/pencil and paper.

 Execute the mv cpytest2 mvtest1 command.

 Execute the command ls -il cpytest2 mvtest1 to verify the

name of cpytest2 has been changed to mvtest1. Notice the inode

has stayed the same because it matches the one you wrote down with

pen/pencil and paper.

 Change your effective user ID to user root by executing the su

command and entering the appropriate password.

 Execute the mv ~student1/mvtest1 /etc command.

 Execute the ls -il ~student1/mvtest1 and ls -il

/etc/mvtest1 commands. Notice the file no longer exists in

student1 ’s home directory, and the inode number has changed. In the

virtual machine supplied with this book, /etc is on a different filesystem

than /home , so the mv command copied the file to the new filesystem

and deleted the file in /home/student1 .

Finding Files in the Linux Filesystem

Linux includes utilities to search for files in the filesystem. In this part of

the chapter, you’ll learn about

 Using find to search for files

 Using xargs to run commands from standard input

 Using locate to find files

Using find to Search for Files

The find utility is a fantastic tool that can be used to search for files by

brute force instead of searching through a pre-allocated database. The

find command’s searches by default are recursive through directories,

but can be limited by using the -mindepth and -maxdepth options

(both options are beyond the scope of this text).

To use find , simply enter find <start_directory>

<expression > at the shell prompt. The <start_directory>

argument defines the search start point. You can specify multiple start

directories. If you do not enter a start directory, the current working

directory is the starting point.

The <expression> defines what to search for. To use

metacharacters in the expressions—for example, * for any character—the

expression must be enclosed in quote marks. For example, to find all files

named core1 , core2 , and core3 on the filesystem, run the find

/ -name 'core[123]' command.

EXAM TIP To find files and display them on the screen once they are

found, use the -print option. The -print option is the default (it

didn’t used to be), so executing find / -name 'core[123]' is the

same as executing find / -name 'core[123]' -print .

Table 5-2 illustrates some of the single-word find expressions, but

there are many others. (Refer to the find man pages for more

information.)

Table 5-2 find Expressions

The -size expression searches for a file based on its size. For

example, run the command find -size 5M to find files that are

exactly 5MB. Run the command find -size +5M to find files larger

than 5MB. You may also use the command find -size +5M -size

-10M to find a file that is smaller than 10MB but greater than 5MB.

Boolean operators combine expressions using -a for “and,” -not for

“not,” or -o for “or.” For example, execute either the find -name

test -user student1 command or the find -name test -a

-user student1 command to find all files with the name of test

owned by student1 .

You may also execute a command on the results of the find

command. The two expressions -exec and -ok take the standard output

from the find expression and make it the standard input to the specified

command.

 -exec Executes the command without asking for confirmation

 -ok Executes the command but requires user confirmation

The command find /var/log -name "*.log -exec ls l

{} \; finds all the files in /var/log with the name <name>.log

and then automatically executes the command ls -l . The command

find /var/log -name "*.log -ok ls l {} \; finds all the

files in /var/log with the name <name>.log and then requires user

confirmation before executing the command ls -l .

NOTE The curly braces, { } , are used as a placeholder for the standard

output of the find command. This standard output becomes the standard

input of the command executed by -exec or -ok . The \; defines the

command’s end.

Using xargs to Run Commands from Standard Input

The xargs command is used to read whitespace-delimited input and

execute a command on each input. A whitespace delimiter is a space, tab, or

newline. The xargs command is easier to explain by demonstrating its

operation.

In the example shown in Figure 5-15, we take the space-delimited output

of the echo command and use it to create files. Remember from Chapter

3 that the pipe (|) takes the standard output of the command on the left

and makes it the standard input of the command on the right. By default, the

unnamed pipe cannot process multiple arguments. In Figure 5-15, the

echo command on the right side of the unnamed pipe produces the

following:

Figure 5-15 xargs example

The pipe passes this output to xargs , and xargs passes to the

touch command one whitespace-delimited argument at a time as input.

In Figure 5-16, we expand our usage of the xargs command. The -I

option in the command is a string replacement option and the curly braces

are a placeholder for the standard input.

Figure 5-16 Example using xargs and mv

The output of the command ls file* provides the whitespace-

delimited arguments filea , fileb , and filec to xargs . The

xargs command places the current argument in the placeholder (-I

{}). It then executes the mv command to rename the current filename to

test.<filename> . In our example, when xargs processes the

argument filea , it executes the command mv filea test.filea .

The xargs command is normally used with the find command. In

the example shown in Figure 5-17, we pipe to the xargs command to run

the rm command and remove a list of commands.

Figure 5-17 Example using xargs and find

In the example shown in Figure 5-18, we pipe to the xargs command

and print the command before it executes, using the -p flag. You must

confirm the command execution (y) or stop the command execution (n

or Ctrl-c).

Figure 5-18 Example using find and xargs -p

Review the find man page to learn more about the find command

and its numerous options. Additional options include finding files by

creation date, modification date, change date, and more.

Using locate to Find Files

Even though the locate command is not included in the CompTIA

Linux+ exam objectives, it is worth discussing. The locate command

finds files by looking for the filename in a pre-allocated database. The

database (by default, /var/lib/mlocate/mlocate.db) is updated

daily. The output of the locate command lists the absolute path to the

file.

Manually Updating the Locate Database with updatedb

The updatedb command may be used to update the mlocate.db

file. The configuration file /etc/updatedb.conf is used to configure

the updatedb command.

The file /etc/updated.conf contains variables that determine

how the updatedb command operates (see Table 5-3).

Table 5-3 /etc/updatedb.conf Options

Understanding Commands and Precedence

Even though functions and the alias , which , whereis , hash , and

type commands are not included in the CompTIA Linux+ exam

objectives, they are worth discussing because Linux administrators

commonly use them. Linux contains four types of commands and we will

learn about

 Creating aliases

 Creating and using functions

 Using builtin commands

 Using external commands

Both aliases and functions are loaded into and executed from memory.

Builtin and external commands are executed from a file.

Let’s take a look at the different command types.

Creating Aliases

An alias is described as a command shortcut. As an example, rather than

type the ls --color=auto command each time you want a color

output, you can create an alias so each time you execute the command ls

the command ls -l --color=auto is executed.

To create an alias, execute the command alias

<alias_name>='<command>' . In the previous example, the

command alias ls='ls --color=auto' creates an alias to ls

so that when ls is run, it produces a color output. To determine if the alias

has been created, execute the command alias or alias

<alias_name> . Figure 5-19 shows how the alias and unalias

commands work.

Figure 5-19 Using alias and unalias

NOTE To make aliases available every time you log in, define them inside

of the file ~/.bashrc .

To override the alias, precede the alias name with a backslash (\). The

backslash tells the shell to ignore the alias and use the literal command. So,

running \ls would result in a file listing without color.

Creating and Using Functions

A function is a list of commands performed as a group that can be called

from other programs. To create a Bash function on the command line, type

the function name followed by opening and closing parentheses, () .

Enclose the function commands between left and right curly braces, { } ,

and then complete the function by using the key sequence Ctrl-D . This

sequence saves the function to memory and exits the process creating the

function. You can view this procedure in Figure 5-20.

Figure 5-20 Creating a function

A function only exists in the shell it is created in. Therefore, if you want

a function to be available at login time, make certain you define the

function in ~/.bashrc .

To view all functions loaded into memory, use the typeset -f or

declare -f command. To remove a function from memory, use the

unset <function_name> command.

Using Builtin Commands

Builtin commands are commands that are built into the shell and execute as

part of the shell process. To see a list of bash builtin commands, execute

help , compgen -b , or enable , or view the bash(1) man page.

In some cases, a keyword represents multiple command types. For

example, the command pwd is both a builtin command and an external

command. In this situation, execute the command /usr/bin/pwd for

the external command, or create an alias to the external command since

aliases have precedence over builtin commands.

If an alias or function exists with the same name as the builtin, the

command builtin <builtin_command_name> ,

\builtin_command_name , or '<builtin_command_name>'

will force a builtin command to run. To receive help for builtin commands,

execute the help <builtin_command_name> command.

Using External Commands

External commands are file-based commands. Once the shell has looked

through the aliases, functions, and builtin commands, it will use the variable

PATH to determine where to search for commands (see Figure 5-21). The

shell looks through each directory in the PATH variable in the order in

which it has been presented until it finds the command.

Figure 5-21 A PATH variable setting

Based on Figure 5-21, the first directory searched will be

/usr/local/bin , followed by /bin , and so on. Linux does not

search the local directory for commands by default.

Hashed Commands

When you execute a command, the absolute path to the command is stored

in a hash table. Before the shell looks for external commands, it views the

hash table to see if the command has executed before.

The hash table contains the absolute path to commands and the number

of times the commands have been executed (hits). The command hash

displays those commands stored in the hash table. The command hash -

r clears the hash table.

Using the type Command

The type command evaluates a keyword and displays how the keyword

will be interpreted as a command. The type command evaluates shell

keywords, aliases, functions, builtins, and external commands.

The command type <keyword> displays the type of command that

will execute when the command is entered on the command line. Executing

type -a displays executable keywords in order of precedence.

Using the which Command

The which -a <keyword> command lists aliases and external

commands associated with a keyword in order of precedence. The

command which <keyword> displays (based on precedence) whether

an alias or external command will be executed.

Figure 5-22 shows an example of creating an alias and function for the

keyword pwd . Notice the difference in the output between the which -

a pwd command and type -a pwd command.

Figure 5-22 Comparing the which and type commands

NOTE The whereis command is similar to the which command in

that it displays the full path to a command, but whereis also displays the

full path to the man page of the command.

Exercise 5-3: Finding Files

In this exercise, practice using shell commands to navigate the Linux

filesystem. For this exercise, log on to the virtual machine provided with

the book as user student1 (password student1). Here are the steps

to follow:

VIDEO Please watch the Exercise 5-3 video for a demonstration on how

to perform this task.

 Open a terminal session.

 Verify you are in user student1 ’s home directory (pwd). If not there,

execute the cd ~ command.

 Create the directory finddir as a subdirectory of your home directory

using the mkdir finddir command.

 Use the command ls -ld finddir to verify the directory has been

created.

 Create the files file1 , file2 , and file3 by using the touch

file{1,2,3} command.

 Verify the files are created.

 Execute the following commands:

 find -name file1

 find -name file"[12]"

 find -name "file*"

 find -name "file[1-3]" ! -user student1

 Execute the locate file* command. Remember, the locate database

(mlocate.db) is updated only once per day.

 Change your effective user ID to 0 by executing the command su and

pressing Enter . When asked for a password, enter the user root ’s

password (password). Verify the change by executing the command

whoami or id .

 Create a locate database of user student1 ’s home directory by

executing the updatedb -U ~student1 -o file.db command.

Verify the file exists by typing the file ~student1/file.db

command.

 Type exit to return to user student1 .

 Use the database created in user student1 ’s home directory to locate

file1 by executing the locate -d ~student1/file.db

file1 command.

 Execute the following commands:

 find -name "file[1-3]" -exec ls -l {} \;

 find -name "file[1-3]" -ok ls -l {} \;

 find -name "file[1-3]" | xargs ls -l

 find -name "file[1-3]" | xargs -p ls -l

 Determine what man pages exist for the keyword passwd by executing

the whereis -m passwd command.

 Use the command whereis -b passwd to see which binary files are

associated with the keyword passwd.

 Have the keyword pwd execute the date command by creating an alias

(alias pwd='date'). Execute the following commands and notice

and explain any differences in the outputs:

 which pwd

 type pwd

 which -a pwd

 type -a pwd

 Execute the unalias pwd command.

Finding Content Within Files

Earlier in this chapter, we discussed shell commands that can be used to

search for files in the filesystem. Linux also provides several utilities to

search for content within a file. Here we will learn about

 Using grep to search within files

 Using egrep to search within files

Using grep to Search Within Files

The grep utility may be used to search for specific content within a file.

By default, grep displays the line on which the string is found.

The command grep <option> <string> may be used to search

for a string in a file. For example, the command grep student1

/etc/passwd , shown in Figure 5-23, searches for the string

“ student1 ” in the file /etc/passwd . If the string is found, by

default, grep will print the line the string is on.

Figure 5-23 The output of grep /etc/passwd

The grep utility can also search for a text string across multiple files.

The command grep student1 /etc/passwd /etc/shadow

/etc/group searches for the string “ student1 ” in /etc/passwd ,

/etc/shadow , and /etc/group .

Adding the -n option to the grep command will display the number

of the line on which the string was found. Other options to grep include

 -i Ignores case when searching for the text

 -l Only displays the filename in which a string occurs

 -n Displays matching line numbers

 -r Searches recursively through subdirectories of the path specified

 -v Displays all lines that do not contain the search string

The grep command uses regular expressions to extend its capabilities,

as detailed in Table 5-4.

Table 5-4 grep Metacharacters

Using egrep to Search Within Files

The command egrep extends the capabilities of the grep command.

The egrep command has been deprecated but is still functional. The

replacement command is grep -E and uses additional metacharacters

not available with standard grep .

Table 5-5 illustrates additional metacharacters available in extended

regular expressions.

Table 5-5 The Additional egrep Metacharacters

NOTE There was a fast version of grep called fgrep designed for

better performance. Fast grep got its speed by reducing features. The

fgrep command is not programmed to use metacharacters like * or ? ,

so those are seen as literals. To compare functionality, run the grep -F

command.

Exercise 5-4: Using grep

In this exercise, practice using Linux search tools. Log on to the virtual

machine provided with the book as student1 (password student1)

and then follow these steps:

VIDEO Please watch the Exercise 5-4 video for a demonstration on how

to perform this task.

 To view any entries that contain the string student1 in the files

/etc/passwd , /etc/shadow , and /etc/group , execute the

following command:

grep student1 /etc/passwd /etc/shadow /etc/group

 Add the -n option to the command in step 1 by executing:

grep -n student1 /etc/passwd /etc/shadow

/etc/group

Notice that this added line numbers to the output.

 Execute grep root /etc/passwd to display the string root line

in the file /etc/passwd .

 The first field of a record in /etc/passwd is the username. Use the

command grep ^root /etc/passwd to display the user record for

user root .

 The last field for user accounts in the file /etc/passwd contains the

absolute path to their default shell. Use the command grep bash$

/etc/passwd to display all users whose default shell is bash .

 Execute the grep roo* /etc/passwd and grep ro\.

commands. Explain the differences in the output.

 Display any string that has two lowercase o’s together using either the

command egrep o{2} /etc/passwd or the command grep -E

o{2} /etc/passwd .

 Use the command egrep 'root|Root' to display the user record for

user root or Root in /etc/passwd .

Chapter Review

In this chapter, we discussed the role of the Linux filesystem and the role of

the various standard directories used in a typical Linux system as specified

in the Filesystem Hierarchy Standard (FHS). We also discussed various

commands used to manage files. The role of the filesystem is to store and

organize data such that it can be easily located and retrieved.

 The file command displays the type of content stored in a file.

 Linux uses a hierarchical filesystem.

 The Linux filesystem hierarchy is based on the Filesystem Hierarchy

Standard (FHS).

 The topmost directory is / (pronounced slash).

 Other standard directories are created beneath / and serve functions

defined in the FHS:

 /bin

 /boot

 /dev

 /etc

 /home

 /lib

 /sbin

 /tmp

 /usr

 /var

 The pwd command is used to display the current working directory.

 The cd command is used to change directories.

 The ls command is used to display directory contents.

 Using ls with the -l option displays the properties of files and

directories.

 Using ls with the -R option displays directory contents recursively.

 The touch command is used to create new files or change the

modification timestamp of an existing file.

 The mkdir command is used to create new directories.

 Use cat to view a text file onscreen.

 Use less or more to view a text file onscreen.

 The less or more command pauses the display one line at a time.

 The head command can be used to display the first few lines of a text

file.

 The tail command can be used to display the last few lines of a text file.

 The tail command can be used with the -f option to monitor a text file

for changes.

 You can use rmdir to delete an empty directory.

 You can use rm -r to delete a populated directory.

 You can use rm to delete files.

 The cp command is used to copy files.

 The mv command is used to move or rename files.

 The ln command allows you to create link files that point to other files or

directories in the filesystem.

 Hard links are made with ln and point directly to the inode of another file.

 Soft links are made with ln -s , have their own inode, and point to a

filename.

 The find utility manually walks the filesystem hierarchy to search for

files.

 The locate utility maintains a database of all files.

 The which command displays aliases and external commands associated

with a keyword.

 The whereis command displays the location of source files, external

commands, and man pages associated with a keyword.

 Use grep to search for text within a file.

Questions

 Which directory would contain boot configuration files?

 /bin

/dev

 /etc

 /boot

 What command would create a file that shares the same inode as the file

filea ?

 cat < filea > fileb

ln -s filea fileb

 ln filea fileb

 ln -s fileb filea

 What command would display how many files share the same inode as

filea ?

 cat < filea > fileb

ln -l filea

 ls -l filea

 ln -sl filea

 The inode number for filea is 1234 . What command would display a

list of files that share the same inode as filea ?

 find / -name filea

find / -name filea -a -inum 1234

 find / -inum 1234

 find / -name filea -o inum 1234

 The command find /etc -name useradd will begin searching for

the file useradd in which directory?

 /

/etc

 /passwd

 /usr

 A user would like to create a link between two files located in different

filesystems. What command should the user use?

 ln

ln -s

 ls -l filea

 ln -sl filea

 The command pwd is both a builtin and external command. Which

command would display this information?

 type -a pwd

which -a pwd

 type pwd

 which pwd

 Which commands will display the location of the man pages for the

keyword passwd ? (Choose two.)

 find / passwd

locate passwd

 whereis -m passwd

 whereis passwd

 Which commands will change your current working directory to your home

directory? (Choose two.)

 cd

echo $HOME

 cd ~

 $HOME

 A user has executed the command mkdir -p cars/chevy/impala .

They immediately decide to remove the directories they just created. Which

command would they use?

 rmdir cars

rm -r cars

 rmdir etc

 rmdir usr

 Which commands would display the first 10 lines of the file

/etc/passwd ? (Choose two.)

 head +10 /etc/passwd

head /etc/passwd

 head -10 /etc/passwd

 head 10 /etc/passwd

 A user has created a symbolic link using the command ln -s filea

fileb . Which command will display the permissions granted to a user

accessing fileb ?

 ls -l fileb

ls -l filea

 ls -lL filea

 ls -lL fileb

 Which of the following is not a valid Linux filename?

 Filea

filea

 r*

 user/one

 What command would display the content type of a file?

 file

ls -l

 cat <filename>

 less <filename>

 What command other than alias may be used to determine if an alias is

associated with a keyword?

 file <keyword>

which -a <keyword>

 ls -l<keyword>

 type -a <keyword>

 What commands would find files filea , fileb , and filec in

student1 ’s home directory and remove them, but require confirmation

before removing them? (Choose two.)

 find /student1 -name "file[a-c] -exec rm {} \;

find /student1 -name "file[a-c] -ok rm {} \;

 find /student1 -name "file[a-c] | xargs rm

 find /student1 -name "file[a-c] | xargs -p rm

 What command will create the directory tree cars/chevy/vega ?

 mkdir cars/chevy/vega

mkdir -p cars/chevy/vega

 mkdir /cars/chevy/vega

 mkdir cars;mkdir chevy;mkdir vega

 You have just created the directory tree fruit/apples/types relative

to the current working directory. What commands could you execute to

delete the directory types? (Choose two.)

 rmdir fruit

cd fruit/apples ; rmdir types

 rmdir fruit/apples/types

 rm -r fruit

 You want to copy file1 to an existing file, file2 . You execute the

command cp file1 file2 and receive the message “ cp:

overwrite file2 .” What commands would you execute to

troubleshoot the problem and prevent this message from occurring?

 which -a ; \cp file1 file2

which -a ; /cp file1 file2

 type -a cp ; cp file1 file2

 type -a cp ; \cp file1 file2

 Which commands will display all strings with two occurrences of a

lowercase o (oo)? (Choose three.)

 grep 'o{2}'

grep 'o\{2\}'

 egrep o{2}

 grep -E 'o{2}'

 Which commands will display the user record for student1 or root

from the file /etc/passwd ? (Choose three.)

 grep 'root \| student1' /etc/passwd

grep -E '^student1|^root' /etc/passwd

 egrep '^student1|^root' /etc/passwd

 grep '^student1\|^root' /etc/passwd

 Which expression will search for the string student1a through to the

string student9z ?

 grep student[1a-9z]

grep student[0-9][a-z]

 grep student[1-9][A-Z]

 grep student[1-9][a-z]

Answers

 D. The /boot directory contains boot configuration files.

 C. The command ln filea fileb would create the file fileb ,

which would share the same inode as filea .

 C. The command ls -l filea would display the number of links (i.e.,

number of files) sharing the same inode.

 C. The command find / -inum 1234 would display a list of files

with the same inode number. The command find / -name filea -

o inum 1234 (answer D) would fail because there is no – in front of -

inum . If there were a “dash” it would work, but it is possible to have

multiple files named filea that would not have the inode number

1234 , so this answer is incorrect.

 B. The first argument of the find command specifies the start location of

the search. If a start location is not specified, the search begins in the

current working directory.

 B. Linking files in different filesystems requires use of a symbolic link;

therefore, the user should execute the command ln -s .

 A. The command type -a displays builtins, external commands, aliases,

and functions. The command which -a only displays external

commands and aliases.

 C, D. The whereis -m passwd command only displays the location

of man pages associated with the keyword passwd . The command

whereis passwd displays the location of the source code, binary, and

man page files associated with the keyword passwd .

 A, C. The commands cd and cd ~ change the current working directory

to the user’s home directory.

 B. The command rmdir only removes empty directories. Since the

directory cars contains a subdirectory of chevy , the command would

generate an error. Therefore, the command rm -r cars must be used.

 B, C. The command head <filename> displays the first 10 lines of a

file. The command head - n <filename> displays the first n lines of

a file.

 D. The ls -l fileb command (answer A) displays the properties of

fileb . The command ls -lL fileb displays the properties of the

file it is linked to.

 D. Linux does not allow use of a whitespace character in a filename, nor the

use of a forward slash (/) or null character. (Note that although r* is a

legal filename, it is not a good choice.)

 A. The file command uses the magic number to determine the type of

content stored in the file. The ls -l command (answer B) displays the

code that represents the type of file (directory, ASCII, and so on).

 B. The which -a <keyword> command lists aliases and external

commands associated with a keyword, in order of precedence.

 B, D. Since the question states the command requires user confirmation

prior to executing the command, you would need to use -ok with the

find command and -p with the xargs command. Answers A and C

would not require user intervention.

 B. The command mkdir -p creates a directory tree. It is important to

note that the directory tree must be created relative to the current working

directory.

 B, C. The rmdir command only removes empty directories. Answer B

uses cd to change the directory to the parent of directory types, and the

rmdir command removes the directory types. Answer C uses a relative

path to remove the directory types. Answer D could work, but it would strip

too much, so it is not the best answer.

 D. To troubleshoot the error, you must determine what command is

executing by executing the command type -a cp (or which -a

cp). The output tells you the cp command is aliased to cp -i , which is

preventing the command from overwriting an existing file. To negate the

alias, execute the command \cp file1 file2 .

 B, C, D. Remember that grep and egrep use two different regular

expression engines, so the formatting of the expression is different, and

grep requires a backslash before some of the expression metacharacters,

which is why A is incorrect. It is also important to remember the command

grep -E is the same as executing the command egrep .

 B, C, D. The question asks for the commands that will display the records

for the user root or student1 . Since a user record in

/etc/passwd begins with the username, you are looking for the

username string at the beginning of the line (^).

 D. Each character position requires its own range specification. The

question states that you need to look for the string student1a through to

string string9z . The first character range position (after the t) would be

[1-9] and the second character range position would be [a-z] .

CHAPTER 6
Managing Ownership and Permissions

In this chapter, you will learn about

 Managing file ownership

 Managing file and directory permissions

 Configuring file attributes and access control lists

The system and the group are intimately interacting entities.

—Clarence “Skip” Ellis, University of Colorado, Boulder

There are two tasks to accomplish when managing user access to a Linux

system:

 Control who can access the system.

 Define what users can do after they have logged in to the system.

Access control is implemented by defining users and groups and then

defining what those users and groups are authorized to do after they log into

the system. Let’s begin by discussing file and directory ownership.

Managing File Ownership

To effectively control who can do what in the filesystem, system

administrators need to first consider who “owns” files and directories. A

user’s file and directory settings default to predefined Linux settings, but

these can be modified to better suit a user’s purpose. You will learn about

the following:

 Viewing default file permissions and ownerships

 Managing ownership from the command line

Let’s start by looking at a file’s default settings.

Viewing Default File Permissions and Ownership

Any time a user creates a new file or directory, their user account is

assigned as that file’s or directory’s “owner.” By default, the owner of a

directory on a Linux system receives read, write, and execute permissions

to the directory. In essence, the owner can do whatever they want with that

directory. Likewise, the owner of a file on a Linux system receives read and

write permissions to that file by default. For example, suppose the

tcboony user logs in to her Linux system and creates a file named

contacts.odt using LibreOffice.org in her home directory. Because

she created this file, tcboony is automatically assigned ownership of

contacts.odt . Figure 6-1 shows the user and group settings of a file.

Figure 6-1 Viewing the owner and group of a file

Notice in Figure 6-1 that there are two settings to discuss for

contacts.odt . The first is the name of the user who owns the file. In

this case, it is tcboony . In addition, the file belongs to the staff

group. That’s because staff is the primary group tcboony belongs to.

You can also view file ownership from the command line using the ls

-l command. This has been done in tcboony ’s home directory in this

example:

NOTE In this example, both instances of l are the lowercase letter l, not

the number one.

Notice that the third column in the output displays the name of the file or

directory’s user (tcboony), while the fourth column displays the name of

the group that owns it (staff). Even though file and directory ownership

is automatically assigned at creation, it can be modified, as explained in the

following section.

Managing Ownership from the Command Line

File and directory ownership is not a fixed entity. Even though ownership is

automatically assigned at creation, it can be modified. Only root can

change the user who owns a file or directory. To change the group of a file

or directory, become root, or as a user, already belong to the group that

the file is changing to.

Modifying file or directory ownership can be done with either graphical

or command-line tools. Staying true to the form of the CompTIA Linux+

exam, this discussion focuses on two command-line utilities, chown and

chgrp , and not the graphical utilities.

Using chown to Change Ownership

The chown utility changes the user or group that owns a file or directory.

The syntax for using chown is chown <user>:<group> <file

or directory> . For example, if there is a file named myfile.txt

in /tmp that is owned by root , to change the file’s owner to the

tcboony user, as root enter chown tcboony

/tmp/myfile.txt , as shown here:

The root user can also change both the user and the group all at once

with a single chown command by entering chown tcboony:staff

/tmp/myfile.txt , for example. This tells chown that the user to

change ownership to is tcboony and the group to change ownership to is

staff .

TIP Use the -R option with chown to change ownership on many files

at once in the current directory and below. This is also known as changing

ownership “recursively.”

Using chgrp to Change Group

In addition to using chown , root can also use chgrp to change the

group that owns a file or directory. Simply enter c hgrp <group>

<file or directory> . For example, to change the group ownership

of the /tmp/myfile.txt file (discussed in the previous examples)

from root to staff , enter chgrp staff /tmp/myfile.txt ,

as shown here:

Exercise 6-1: Managing Ownership

In this exercise, practice modifying file and directory ownership from the

shell prompt of the Linux system. Perform this exercise using the virtual

machine that comes with this book.

VIDEO Please watch the Exercise 6-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Log in to the system using the login name student1 and password

student1 .

 Open a terminal session by clicking Applications | Favorites | Terminal.

 Switch to the root user account with the su – command using a

password of password .

 Verify the student1 user account is a member of the research

group by doing the following:

NOTE The research group was configured in Exercise 4-2 of Chapter

4.

At the shell prompt, enter cat /etc/group .

 Verify that the student1 user is a member of the research group.

If the student1 user is not a member of the research group, add

student1 to the group using the usermod command as follows:

usermod -aG research student1

 Change to the / directory by entering cd / at the shell prompt.

 Create a new directory named RandD by entering mkdir RandD at the

shell prompt.

 At the shell prompt, enter ls -l . Notice that the root user account and

the root group are the owners of the new directory.

 Change ownership of the directory to the student1 user account and the

research group by entering chown student1:research

RandD at the shell prompt.

 Enter ls -l again at the shell prompt. Verify that ownership of the

RandD directory has changed to the student1 user account and the

research group, as shown here:

Managing File and Directory Permissions

Managing ownership represents only a part of what needs to be done to

control access to files and directories in the Linux filesystem. Ownership

only specifies who owns what, not what one can or cannot do with files and

directories. This section covers

 How permissions work

 Managing permissions from the command line

 Working with default permissions

 Working with special permissions

To start, you will have to understand how permissions work, which is

discussed next.

How Permissions Work

Unlike ownership, permissions are used to specify exactly what an end user

may do with files and directories in the filesystem. Permissions may allow

an end user to view a file but not modify it, for example, or allow an end

user to open and modify a file. Permissions may even allow an end user to

run an executable file. Permissions can be configured to prevent an end user

from even seeing a file within a directory.

Each file or directory in the Linux filesystem stores the specific

permissions assigned to it. These permissions together constitute the mode

of the file. Any file or directory can have the permissions shown in Table 6-

1 as their mode.

Table 6-1 Linux Permissions and Their Effects

These permissions are assigned to each of three different entities for each

file and directory in the filesystem:

 owner/user (u) This is the end user that has been assigned to be the file’s

or directory’s owner. Permissions assigned to the owner or user apply only

to that end user’s account.

 group (g) This is the group that has been assigned to the file or directory.

Permissions assigned to the group apply to all accounts that are members of

that group.

 world/other (o) This entity, also known as world or other, refers to all

other users who have successfully authenticated to the system but are

neither the owner nor belong to the group. Permissions assigned to this

entity apply to these user accounts.

Linux first checks if the end user is the owner/user; if so, they are

assigned the owner/user permission. If the end user is not the user but

belongs to the group, they get the group permission. Finally, if the end user

is neither the user nor a member of the group, they get the other permission.

For example, suppose the user permissions are read-only and the group and

other permissions are read/write; then the end user will have the weakest

permissions of anyone since user is set to read-only.

Users run the ls -l command to view the permissions assigned to

files or directories in the filesystem. Consider the example shown here:

The first column displayed is the mode for each file and directory. The

first character of the mode denotes the file type, which can be a regular file

(-), a directory (d), a symbolic link (l), a block device (b), or

character device (c). As you can see, Project_design.odt and

Project_schedule.odt are regular files, whereas Desktop is a

directory.

A block device is a driver for some type of hardware, such as a hard disk

drive, that transfers data in “blocks” from the hard disk to memory. A

character device is a driver for hardware, such as a keyboard or a mouse,

that transfers data one bit or byte at a time. A symbolic link is like a shortcut

that gets redirected to the file it is “linked” to, as discussed in Chapter 5.

The next three characters are the permissions assigned to the entry’s

owner: the user. For example, Project_schedule.odt has rw-

assigned to its user (tcboony). This means tcboony has read and

write permissions to the file, but not execute. Because the file isn’t a

program or script, no executable permission needs to be set. If the file were

a program or script and the execute permission were assigned, the

permission would show as rwx . Because the user has read and write

permissions, tcboony can open, edit, and save the file changes.

The next three characters are the permissions assigned to the group. In

this case, it is the staff group. Any user on the system who is a member

of the staff group is granted r-- access to the

Project_schedule.odt file. This means they have the read

privilege, allowing them to open the file and view its contents, but they are

not allowed to save any changes to the file.

Before we progress any further, permissions for each entity can also be

represented numerically. This is done by assigning a value to each

permission, as shown in Table 6-2.

Table 6-2 Numeric Values Assigned to Permissions

Using these values, the permissions assigned to user (u), group (g), or

other (o) can be represented with a single digit. Simply add up the value of

each permission. For example, suppose user is assigned read and write

permissions to a file. To determine the numeric value of this assignment,

simply add the values of read and write together (4 + 2 = 6). Often a file’s

or directory’s mode is represented by three numbers that define owner,

group, and other. Consider the example shown in Figure 6-2.

Figure 6-2 Representing permissions numerically

In this example, the associated file’s user has read and write permissions

(6), the group has the read permission (4), and other also has read

permission (4). Using the ls -l command, this mode would be

represented as -rw-r--r-- , as shown here for the file myfile.txt :

So, what if these permissions aren’t correct? Use the chmod utility to

modify them! Let’s discuss how this is done next.

Managing Permissions from the Command Line

Although using the GUI is not covered on the CompTIA Linux+ exam,

Linux administrators can modify permissions graphically. For example,

using the file browser in the GNOME desktop environment, you can right-

click any file or directory and then select Properties | Permissions to change

the file permissions. The screen shown in Figure 6-3 is displayed.

Figure 6-3 Setting permissions in file browser

However, for the Linux+ exam, you must be able to accomplish the task

with command-line tools using chmod to modify permissions. To use

chmod , you must either own the file or be logged in as root .

Several different syntaxes can be used with chmod . The first is to enter

the command chmod <entity=permissions> <filename> at

the shell prompt. Substitute u for owner, g for group, and o for other in

the entity portion of the command. Also substitute r , w , and/or x

for the permissions portion of the command. For example, to change

the mode of the contacts.odt file to -rw-rw-r-- (giving user and

group read and write permissions while giving other only read access),

enter chmod u=rw,g=rw,o=r contacts.odt or chmod

ug=rw,o=r contacts.odt at the shell prompt (assuming the file

resides in the current directory). The permissions are adjusted as shown

here:

Also use chmod to toggle a particular permission on or off using the

+ or – sign. For example, to turn off the write permission given to group

for contacts.odt file, enter chmod g-w contacts.odt at the

shell prompt. Once executed, the specified permission is turned off, as

shown here:

To turn the permission back on, enter chmod g+w contacts.odt .

Or, substitute u or o to modify the permission to the file or directory for

owner or other, respectively.

Feature for Teams Working on a Project

There is a special setting for directories when working as a team on a

project. When setting the special permission bit on the group of the

directory with chmod g+s <directory> , any files created in that

directory thereafter will inherit the group of the directory instead of the

primary group of the user who creates the file. See the example of a

subdirectory called temp shown here:

root Privileges Through the wheel Group

Historically, the wheel group is a special group for system

administrators. Members of this group can execute restricted commands

within a standard user account. Be cautious assigning members to the

wheel group and adding files, directories, and commands to the wheel

group, because this is a security risk.

A better feature to assign administrative controls is sudo , because it

logs administrative activity. Today, members added to the wheel group

on RHEL-based systems or the sudo group on Debian-based systems are

granted sudo access. Further details are provided in Chapter 16.

Changing Permissions Numerically

Finally, you can also use numeric permissions with chmod , which system

administrators use most often. Just modify all three entities at once. To do

this, enter chmod <numeric_permission> <filename> .

Going back to the earlier example, suppose an end user wants to grant

read and write permissions to user and group but remove all permissions

from other. That would mean the permissions of user and group would be

represented numerically as 6. And, because other gets no permissions, it

would be represented by 0. Implement this by entering chmod 660

contacts.odt at the shell prompt. When done, the appropriate changes

are made, as shown in the following example:

TIP Use the -R option with chmod to change permissions on many

files at once, recursively.

Troubleshooting Tips for user and group Permissions

When a user attempts to read a file they do not have access to, they will get

a cryptic error message, as shown here:

Yes, the error printed could be better, such as cat: file.txt: read

permission denied , but Linux is slowly improving and becoming

more user friendly.

So, after viewing a Permission denied error message, run ls -

l <filename> to find which user or group permission is missing on the

file, and run ls -ld . to discover which user or group permission is

missing on the directory. After determining the problem, the permission can

be changed by the file owner or a system administrator.

Let’s practice managing permissions in the following exercise.

Exercise 6-2: Managing Permissions

In this exercise, you practice modifying permissions from the shell prompt

of the Linux system. You also create a design document for a hypothetical

Research and Design team and modify its permissions to control access.

Perform this exercise using the virtual machine that comes with this book.

VIDEO Please watch the Exercise 6-2 video for a demonstration on how

to perform this task.

Complete the following steps:

 Log in to the system using the login name student1 and password

student1 . Start a terminal by clicking Applications | Terminal.

 Switch to the root user account with the su - command, and enter

the password.

 Change to the /RandD directory by entering cd /RandD at the shell

prompt.

 Create a design document for the team and restrict access to it by doing the

 following:

Create a new file named design_doc.odt by entering touch

design_doc.odt at the shell prompt.

 At the shell prompt, enter the ls -l command. Notice that the root

user account and the root group are the owners of the new file.

Change ownership of the file to the student1 user account and the

research group using the following command:

chown student1:research design_doc.odt

 Enter ls -l again at the shell prompt. Verify that ownership of the file

directory has changed to the student1 user account and the

research group. Notice that user has rw- permissions to the file, but

group only has r-- permission.

Grant Group rw- permissions by entering chmod g+w

design_doc.odt at the shell prompt.

Enter ls -l again at the shell prompt. Notice that user and group now

both have read/write access to the file.

Notice that other has read access to the file. To keep this document

confidential, remove this access by entering chmod 660

design_doc.odt at the shell prompt.

 Enter ls -l again. Verify that other has no permissions to this file.

 Next, control access to the research directory itself using permissions. Do

the following:

Enter ls -ld at the shell prompt. Notice that user has full access to the

RandD directory, but group is missing the write permission to the

directory. Also notice that other can read the directory contents (r) and

can enter the directory (x).

 Grant group full access to the directory and remove other access to the

directory completely by entering chmod 770 RandD at the shell

prompt.

Enter ls -ld at the shell prompt. Verify that user and group have full

access and that other has no access.

Working with Default Permissions

Whenever a new file or directory is created in the filesystem, a default set

of permissions is automatically assigned.

By default, Linux assigns rw-rw-rw- (666) permissions to every

file whenever it is created in the filesystem. It also assigns rwxrwxrwx

(777) permissions to every directory created in the filesystem. However,

these are not the permissions the files or directories actually end up with

because of a security feature called umask . Let’s look at an example.

Suppose tcboony was to create a new directory named revenue in

her home directory and a file named projections.odt in the revenue

directory. Based on what we just discussed, the revenue directory

should have a mode of rwxrwxrwx and the projections.odt file

should have a mode of rw-rw-rw- . However, this is not the case, as

shown here:

Notice that the revenue directory has a mode of drwxr-xr-x

(755). This means the directory’s user has read, write, and execute

permissions to the directory. group and other have read and execute

permissions to the directory. Likewise, notice that the

projections.odt file has a mode of -rw-r--r-- (644).

Owner has read and write permissions, whereas group and other have

only the read permission.

These are not the default permissions Linux is supposed to assign! Why

did this happen? Because the default permissions are not secure. Think

about it. The default directory mode would allow anyone on the system to

enter any directory and delete any files they wanted to. Likewise, the

default file mode would allow any user on the system to modify a file you

created. What a nightmare!

Using umask to Secure Files and Directories

To increase the overall security of the system, Linux uses umask to

automatically remove permissions from the default mode whenever a file or

directory is created in the filesystem. The value of umask is a three- or

four-digit number, as shown here:

For most Linux distributions, the default value of umask is 0022 or

022 . Each digit represents a permission value to be removed. For a

umask of 022 , the first digit (0) references—you guessed it—user.

The middle digit (2) references group, and the last digit (2) references

other. Because 0 (zero) is listed for user, no permissions are removed from

the default mode for a file or directory user.

However, because 2 is listed for group and other, the write permission

is removed from the default mode whenever a file or directory is created in

the filesystem for group and other. The function of umask is shown in

Figure 6-4. (For a umask of 0022 , the first 0 is discussed in the

upcoming section “Working with Special Permissions.”)

Figure 6-4 How umask works

The default value of umask works for most Linux administrators.

However, there may be situations where you need to tighten or loosen the

permissions assigned when a file or directory is created in the filesystem.

To do this, change the value assigned to umask .

You can do this by making a temporary change to umask , by entering

umask <value> at the shell prompt. For example, to remove the

execute permission that is automatically assigned to other whenever a new

directory is created, enter umask 023 . This would cause the write

permission (2) to be removed from group upon creation, as well as write

(2) and execute (1) from other. This will effectively disallow anyone

from entering the new directory except for the directory’s user or members

of group. This is shown here:

Notice that, because the value of umask was changed, the execute

permission (x) was removed from other in the mode when the temp

directory was created.

EXAM TIP Because regular files have a permission of -rw-rw-rw- ,

no execute permission bit is set by default. A umask value of 0111

would have no effect on a regular file.

Setting a Permanent umask Value

The method for modifying umask discussed in the prior section works

great, but it is not persistent. If the system restarted, the umask would

revert to its original value. That is because the value of umask is

automatically set each time the system boots using the umask parameter

in the configuration files /etc/profile , /etc/bashrc ,

/etc/login.defs , or ~/.bashrc , depending on the distribution

(where ~ means the end user’s home directory).

To make the change to umask permanent, simply edit the appropriate

configuration file in a text editor and set the value of umask to the desired

value.

Next, let’s look at special permissions.

Working with Special Permissions

As previously mentioned, the value of umask is a four-digit number, as

shown here:

Let’s discuss the leading 0 here, which is called a special permission

bit.

Most tasks completed with permissions will be with the read, write, and

execute permissions. However, there are three other special permissions to

assign to files and directories in the filesystem. These are shown in Table 6-

3.

Table 6-3 Special Permissions

These special permissions are referenced as an extra digit added to the

beginning of the file’s or directory’s mode. As with regular permissions,

each of these special permissions has a numerical value assigned to it, as

shown here:

 SUID: 4

 SGID: 2

 Sticky Bit: 1

Assign these special permissions to files or directories using chmod .

Just add an extra number to the beginning of the mode that references the

special permissions to associate with the file or directory. For example, to

apply the SUID and SGID permissions to a file named runme that should

be readable and executable by user and group, enter chmod 6554

runme at the shell prompt. This specifies that the file has SUID (4) and

SGID (2) permissions assigned (for a total of 6 in the first digit). user

and group both have read and execute permissions (5), and other has read-

only permissions.

To set the special bits mnemonically, execute

chmod ug=srx,o=r runme

This is equivalent to chmod 6554 runme .

To remove the sticky bit for the file user and group, run

chmod u-s,g-s runme

This is equivalent to chmod ug-s runme .

Overriding the real userid (RUID) and real groupid (RGID)

Assuming the SUID and SGID bits are set for the runme command, what

does that mean when the command is executed? Let’s say you are logged in

as the user ian , and ian ’s default group is users . Normally when

ian runs a command, it runs at the effective userid (EUID) of ian ’s real

userid (RUID) ian and the effective groupid (EGID) of ian ’s real

groupid (RGID) users .

But, when the SUID and SGID bits are set, the RUID and/or RGID are

overridden and take the command’s permission. Now whenever ian runs

runme , the EUID becomes the owner of the command and the EGID

becomes the group of the command. In the following example, the SUID

and SGID are set because an s is shown for the user (owner) and group of

the command:

Whenever ian or any user runs the runme command, their EUID

will be tcboony and their EGID will be wheel . Their real userid

(RUID) and real groupid (RGID) are overridden because of the special

permission bit settings.

Two commands that use special permission bits include

/usr/bin/passwd , the command you use to change your password,

and /usr/bin/locate , the command you use to locate files on a

Linux filesystem, as shown here:

When a user runs the passwd command, they temporarily obtain

root user privileges for the purpose of that command. In this case, only

the root user can modify the file that contains passwords,

/etc/shadow .

When a user runs the locate command, they temporarily obtain

slocate group privileges to access databases critical for the locate

command to function.

Using Special Permissions to Reduce Abuse of Shared Directories

Initially when a shared directory is created, any user can remove anyone

else’s files. The reason is that, to allow shared directories to work,

everyone, including other , needs write permission to the directory,

which appears as drwxrwsrwx .

To rid the abuse of users removing files that do not belong to them,

enable the sticky bit on the shared directory. Again, use chmod by one of

these two methods so that only file user s (and root) can remove their

files from within the shared directory and not anyone else:

One directory that uses the sticky bit is /tmp . Notice the t setting for

other, which means the sticky bit setting is enabled:

Now only file owners (and root) can remove their files within the shared

directory.

Practice managing default and special permissions in the following

exercise.

Exercise 6-3: Managing Default and Special Permissions

In this exercise, practice modifying default permissions with umask and

start creating files. Also practice adding special permissions to directories.

Perform this exercise using the virtual machine that comes with this book.

VIDEO Please watch the Exercise 6-3 video for a demonstration on how

to perform this task.

Complete the following steps:

 Log in to the system using login name student1 and password

student1 . Start a terminal by clicking Applications | Terminal.

 If necessary, switch to the root user account with the su - command

and a password of password .

 Change to the /RandD directory by entering cd /RandD at the shell

prompt.

 Create several Research and Development documents in the RandD

directory. However, make sure these documents are secure from prying

eyes. Recall from the previous exercise that Other is automatically

granted read access to files when created. You don’t want this to happen.

You need Other to have no access at all to any documents created. Do

the following:

Change the default permissions by entering umask 027 at the shell

prompt.

 Verify the value of umask by entering umask at the shell prompt. It

should display 0027 .

Create a new file named schedule.odt by entering touch

schedule.odt at the shell prompt.

 Enter ls -l at the shell prompt. Verify that user has rw- , group has r-

- , and other has --- permissions.

 Having the write permission to a directory allows anyone in the

research group to delete any file in the directory. We want to configure

the directory so that users in the research group can only delete files

they actually own. Do the following:

At the shell prompt, enter the cd / command.

 At the shell prompt, add the Sticky Bit permission to the RandD directory

by entering chmod 1771 RandD .

At the shell prompt, enter ls -l RandD and notice that a t has been

added to the last digit of the other portion of the mode of the RandD

directory. This indicates that the sticky bit has been set:

Configuring File Attributes and Access Control Lists

Linux offers advanced features to provide more security for files and

directories. Linux administrators can set even tighter access controls on

files by using features of the following:

 File attributes

 File access control lists

File Attributes

File attributes allow an operator to provide additional capabilities to files.

For example, a file can be made to be append-only or immutable. An

administrator can use the chattr command to change attributes and use

the lsattr command to list attributes, as shown here:

The preceding example shows the immutable bit being set using the

command chattr +i contacts.odt , and then the immutable

feature being removed with chattr -i contacts.odt . The e

setting means extent format, which is always the case on ext4

filesystems and allows files to be saved properly.

Other modifiable file attributes include the following:

 c Compressed

 j Data journaling

 S Synchronous updates

Visit the chattr(1) and lsattr(1) man pages to learn about

other modifiable attributes.

Troubleshooting Tips for Attributes

Users might find that even though they have permission to remove a file,

they cannot remove it. They will see that running ls -ld . shows they

have write permission on the directory, but yet cannot remove the file. Their

next step is to run lsattr to see if an attribute is set, then contact an

administrator to remove the attribute with chattr , because changing

attributes requires root privilege.

EXAM TIP Once file immutability is set, no one can remove the file,

including root !

File Access Control Lists

Users can extend their file security settings by implementing a feature

called access control lists (ACLs). This feature allows users to assign

specific, more granular privileges to their files and directories. For example,

in the staff group directory, user nathand has read and write access

to the files because he is a member of the staff group. However, an

administrator determines nathand only needs read access to

contacts.odt, which is also part of the staff group. ACLs can reduce his

privilege to read-only without removing the file’s staff group

membership.

To view the current ACL settings, use the getfacl command:

Since nathand is a member of the group staff , he has read-write

privileges. To give nathand read-only privileges on the file but still

allow him read-write privileges on other files that belong to the staff

group, set an ACL using setfacl .

In this example, we run setfacl with the -m option to modify the

file’s ACL value:

User nathand now only has read access to the file contacts.odt

even though he belongs to the group staff , which has a higher privilege

of read-write.

The mask value that appears is a security mechanism to automatically

limit privileges to a maximum value. For example, if the mask is set to r-

- by using the command setfacl -m mask:r contacts.odt , all

users would only have read access even if their user or group membership is

higher.

Troubleshooting Tips for Groups and ACLs

A user might belong to the staff group yet find they do not have the

read privilege they are supposed to have. Running ls -l <filename>

shows they have read privilege. But then the user notices a + sign at the

end of the permissions. This means that an ACL is defined on the file, as

shown here:

Now, when the user runs getfacl <filename> , they see that an

ACL was set that limits their permission to read-only. To raise the privilege,

they need to request the change from the owner of the file or the system

administrator.

Chapter Review

In this chapter, we discussed ownership and permissions. Assigning users

and groups can only control who accesses the filesystem, but not what they

can do with files or directories in the filesystem. To do this, we need to

implement ownership and permissions.

Whenever a user creates a file or directory, that user is automatically

assigned to be its owner. In addition, the group the user belongs to becomes

the file’s or directory’s group owner. These defaults can be changed;

however, only root can change a file or directory’s owner. The owner

can change its group.

To modify ownership, use the chown command. This command can

change both the user and/or the group that owns a file or directory. To

only change the group , use the chgrp command. The permissions

assigned to user, group, and other together constitute a file or directory’s

mode.

The chmod tool is used to manage permissions from the shell prompt,

using any of the following syntaxes to assign permissions to user ,

group , and/or other :

 chmod u=rw,g=rw,o=r <file_or_directory>

 chmod ug=rw,o=r <file_or_directory>

 chmod 664 <file_or_directory>

By default, Linux automatically assigns new files with -rw-rw-rw-

permissions and new directories with drwxrwxrwx permissions upon

creation. However, to increase security, the umask variable is used to

automatically remove some privileges.

We also briefly discussed the special permissions that can be assigned.

Assign these permissions numerically with chmod by adding an extra

digit before the user digit in the command using the values just shown. For

example, chmod 6755 <command> will set the SUID and SGID bits

for the command. Now the program will run at the privilege of the user

(owner) and group permissions of the command, not the end-user

permissions.

Finally, additional file security settings can be created with ACLs and

file attributes. Use the setfacl command to set granular permissions

beyond chmod . Use the chattr command to secure a file by making it

immutable. This keeps a file from being accidentally deleted by every user,

including root !

 Use the ls -l command to view ownership (note that this command uses

a lowercase l, not a number one).

 Use the chown utility to configure user and group ownership of a file or

directory.

 You must be logged in as root to change user ownership.

 You must be logged in as root or as the file/directory owner to change

group ownership.

 Permissions are used to define what users may or may not do with files or

directories in the filesystem.

 Linux uses the read, write, and execute permissions for files and directories.

 Linux permissions are assigned to user (u), group (g), and other (o).

 Permissions can be represented numerically: read = 4, write = 2, and

execute = 1.

 These permissions are too insecure for most situations, so the umask

variable is used to subtract specific permissions from the defaults.

 The default value of umask is 022 , which subtracts the write permission

(2) from group and other.

 Modify the value of umask to change the default permissions assigned

upon creation.

 Linux also includes three default special permissions: Sticky, SUID, and

SGID.

 Assign special permissions with chmod by adding an additional digit

before the user digit in the command.

Questions

 You need to change the owner of a file named /var/opt/runme from

mireland , who is a member of the staff group, to dnelson , who

is a member of the editors group. Assuming you want to change both

user and group owners, which command will do this?

 chown mireland dnelson /var/opt/runme

chown -u "dnelson" -g "editors" /var/opt/runme

 chown dnelson /var/opt/runme

 chown dnelson:editors /var/opt/runme

 Which permission, when applied to a directory in the filesystem, will allow

a user to enter the directory?

 Read

Write

 Execute

 Access Control

 A user needs to open a file, edit it, and then save the changes. What

permissions does the user need in order to do this? (Choose two.)

 Read

Write

 Execute

 Modify

 A file named employees.odt has a mode of -rw-r--r-- . If

mhuffman is not the file’s owner but is a member of the group that owns

it, what can he do with it?

 He can open the file and view its contents, but he can’t save any changes.

He can open the file, make changes, and save the file.

 He can change ownership of the file.

 He can run the file as an executable program.

 A file named myapp has a mode of 755 . If dnelson does not own

this file and is not a member of the group that owns the file, what can she

do with it?

 She can change the group that owns the file.

She can open the file, make changes, and save the file.

 She can change ownership of the file.

 She can run the file as an executable program.

 You need to change the permissions of a file named schedule.odt so

that the file owner can edit the file, users who are members of the group

that owns the file can edit it, and users who are not owners and don’t belong

to the owning group can view it but not modify it. Which command will do

this?

 chmod 664 schedule.odt

chmod 555 schedule.odt

 chmod 777 schedule.odt

 chmod 644 schedule.odt

 The Linux system’s umask variable is currently set to a value of 077 . A

user named jcarr (who is a member of the staff group) creates a file

named mythoughts.odt . What can users who are members of the

staff group do with this file?

 They can view the file, but they can’t modify or save it.

They can open, modify, and save the file.

 They can open, modify, and save the file. They can also execute the file if it

is an executable.

 They have no access to the file at all.

 An executable file has the SUID permission set, and it is owned by root .

If this file is run on the system by a guest user, which privilege will the

program run at?

 The user who created the file remains the owner.

The user who ran the file becomes the file’s permanent owner.

 The program will run at root privilege.

 The root user becomes the file’s owner.

 Which command lists the file ACL?

 setfacl --get

getfacl

 getfacl --list

 setfacl -g

 Which of the following commands is used to make a file immutable?

 chattr +i <filename>

chattr -i <filename>

 chattr --immutable <filename>

 chattr ++immutable <filename>

Answers

 D. Entering chown dnelson:editors /var/opt/runme will

change the user and group owners of the runme file to dnelson and

editors .

 C. The execute permission allows a user to enter a directory in the

filesystem.

 A, B. The user must have read and write permissions to open and modify a

file.

 A. In the mode shown, Group is given the read permission only. Because

mhuffman is a member of the group, he can only open and view file

contents. He cannot modify and save the file.

 D. Because dnelson isn’t the owner and isn’t a member of the owning

group, she is granted the rights assigned to Other , which are read (4)

and execute (1). This allows her to run the file.

 A. Entering chmod 664 schedule.odt will grant User and

Group read (4) and write (2) permissions. It will also grant Other

read (4) permission.

 D. Because umask is set to 077 , all permissions (read = 4 , write = 2 ,

execute = 1) are removed from Group and Other . Therefore,

members of the owning group have no access to the file, so

mythoughts.odt ’s final permission will be 600 .

 C. The SUID permission causes the file’s User (owner) to temporarily

become the command’s owner.

 B. To list a file’s ACL, use the getfacl command.

 A. chattr +i <filename> will set the immutable bit on the file,

making it unremovable, even by root .

CHAPTER 7
Managing Storage

In this chapter, you will learn about

 An overview of storage

 Creating partitions

 Creating filesystems

 Managing Linux filesystems

 Managing quotas

You can’t make the leap from fish to mammal, but it’s an important first step

in the puzzle.

—Ralph Etienne-Cummings, John Hopkins University

This chapter introduces the elements used to construct and manage storage.

Storage concepts are the foundations for file, block, and object storage

systems. You will also learn how to create encrypted filesystems and quotas

for users and groups.

An Overview of Storage

A new disk is a large storage space. Partitions are used to allocate the whole

or portions of the drive into logical storage spaces (see Figure 7-1).

Figure 7-1 Hard disk divided into partitions

The partition type available, MBR or GUID, is dictated by the bootstrap

method.

You need to understand a few fundamentals about storage devices so that

they can be configured correctly to save data. These fundamentals include

an understanding of the following topics:

 The master boot record

 The GUID partition table

 The device naming conventions

 Viewing disk partitions

The Master Boot Record

The master boot record (MBR) is found on the first sector of a hard drive on

systems that use the basic input/output system (BIOS).

NOTE A sector is the smallest storage unit for a hard disk device.

Traditionally this size was 512 bytes, but new hard drives using Advanced

Format (AF) can increase the sector size to 4,096 bytes. AF-capable hard

drives can emulate a 512-byte sector.

The MBR was designed to fit in one 512-byte sector (see Figure 7-2).

The first 446 bytes are allocated to boot code and error messages, the next

64 bytes contain the partition table, and the last 2 bytes store the disk

signature. The disk signature points to the bootloader’s root directory.

Figure 7-2 Master boot record layout

The MBR’s partition table was designed to contain four 16-bit partition

table entries. This limitation precluded BIOS-based systems from

supporting more than four primary partitions. The four-partition limitation

was overcome by using an extended partition. An extended partition is a

primary partition that may be divided into logical partitions. The extended

partition tracks the logical partitions using an extended master boot record

(EMBR). A logical partition is a partition that resides in an extended

partition. Logical partition numbering starts at five. A sample partitioning

scheme is shown in Figure 7-3.

Figure 7-3 BIOS partitioning schema

NOTE BIOS supports 24-bit cylinder, head, sector (CHS) addressing and

32-bit logical block addressing. Thirty-two-bit addressing limits the

maximum disk size to 2TB.

The GUID Partition Table

The GUID Partition Table (GPT) was designed to overcome some of

BIOS’s limitations and provide more security by adding redundancy. The

name GUID Partition Table refers to the assignment of a globally unique

identifier (GUID) to each partition. This concept is similar to the function

of a universally unique identifier (UUID), which provides a unique

identification number for filesystem and system devices.

GPT Partition Table Scheme

GPT is a single partition that extends across an entire disk device.

Components of the partition are accessed via a logical block address (LBA).

When viewing LBA numbers associated with the GPT partition scheme,

you will see positive LBA numbers, which denote block locations offset

from the beginning of the drive, and negative LBA numbers, which denote

block locations offset from the end of the disk device (see Figure 7-4). The

information stored in the positive number blocks are primary entries, and

the information stored in negative number blocks are secondary (backup)

entries.

Figure 7-4 GPT logical block address numbering

EXAM TIP Detailed features of the GUID Partition Table (GPT) are

listed here for reference only. They are not part of the Linux+ exam

objectives and will not appear on the exam. Chapter 20 provides more

details on GPT partition structures.

GPT Benefits

Some of the benefits of a GPT partition include the following:

 4KB sectors

 Disk size capabilities from 2.2 terabytes (TB) to approximately 8 zettabytes

(ZB) due to support of 64-bit addressing

 Redundancy, because the partition header and table details are stored at the

beginning and end of the drive

 Human-readable partition names

The Device Naming Conventions

A device name format is xxyz, where

 xx is the device type.

 y indicates the device’s logical unit number.

 z indicates the partition number.

Device Type (xx)

Some examples of device types include storage devices, such as sd

(SCSI/SATA devices) and hd (IDE hard drives). Other devices include

terminals, such as tty (text terminals) and pts (pseudo-terminals).

Logical Unit Number (y)

Next, the device name contains the device’s logical unit number, a unique

identifier for a device within a group of devices. For example, a system may

have multiple SCSI devices (device type sd). To distinguish one SCSI

device from another, each SCSI device is assigned a unique identifier.

Logical unit sda refers to the first SCSI device. The second SCSI device

would be sdb . Also,

 tty1 refers to the first text terminal.

 pts/0 refers to the first pseudo-terminal.

 lp0 refers to the first printer.

 st0 refers to the first SCSI tape drive.

 sr0 refers to the first optical (CD/DVD) drive.

Partition Number (z)

A block device may be split into numbered partitions. The device name for

the first partition of the first SCSI device is sda1 , as previously shown in

Figure 7-1.

EXAM TIP /dev/sda1 is the driver for the first partition of the first

hard drive. /dev/sdb3 is the driver for the third partition of the second

hard drive.

Viewing Disk Partitions

There are times when you need to view how a disk device is partitioned.

You can do so with the commands lsblk , fdisk -l , and parted -

l .

lsblk Command

The lsblk command, shown in Figure 7-5, displays a list of block

devices and their partitions. To see a list of USB devices, their model, and

manufacturer information run the lsusb command.

Figure 7-5 lsblk output

fdisk -l Command

The command fdisk -l , shown in Figure 7-6, displays the partition

table of all block devices.

Figure 7-6 fdisk -l output

The command fdisk -l /dev/<device_name> , shown in

Figure 7-7, displays the partition information of the physical block device

supplied in the argument /dev/<device_name> .

Figure 7-7 fdisk -l /dev/sdb output

parted -l Command

The commands parted -l <device_name> , shown in Figure 7-8,

and fdisk -l will both display disk partition information. The

parted command will print some detailed logical volume information.

Figure 7-8 parted -l /dev/<device_name> output

To view an individual device using parted , execute the parted

command (line 1 in Figure 7-9). Once you view the parted prompt, use

select to choose the device to review (line 7). Once you have selected

the device, execute the command print (line 10) to print the device’s

partition table. Notice this method does not print meta-device

information.

Figure 7-9 parted select command output

Creating Partitions

A partition is a section of a physical disk device treated as a logical block

device. The commands fdisk , parted , and gdisk are applications

used to create partitions on a disk device. gdisk is used specifically for

devices with a GPT partition.

This section discusses the planning and execution of creating partitions.

In this section we discuss

 Partition considerations

 fdisk partitioning utility

 parted partitioning utility

 gdisk partitioning utility

 Block device encryption

Partition Considerations

You must consider several factors when adding a partition, including

partition availability, disk space availability, partition size, and swap

partition size.

Partition Availability

A SCSI device can have up to 15 partitions, and an IDE device can have 63

partitions. In the example shown in Figure 7-10, I have used eight partitions

on a SCSI device, so I can add up to seven more partitions.

Figure 7-10 fdisk -l /dev/sdb command output

Disk Space Availability

You can determine if space is available to add additional partitions by

determining the difference between the total number of sectors on the

device (line 10 in Figure 7-10) and the ending sector of the last partition.

Partition Size

Most operating systems and applications have documentation that indicates

the amount of disk space they require. Many third-party applications

specify requirements based on the type of application, number of users

accessing the application, and the projected amount of data. Also consider

using logical volume management (LVM), covered in Chapter 8, which

enables administrators to dynamically increase the size of a partition and

filesystem.

Swap Partition Size

Swap space is virtual memory space created on a swap filesystem. The

swap filesystem may be created on a partition or in a file. When active

processes require more memory than is available, the operating system uses

swap space by moving (swapping) inactive pages of memory to the block

device. Swap space should be larger than the amount of memory installed

on the system, because when a system crashes, it dumps its memory into

swap for later analysis.

fdisk Partitioning Utility

The fdisk utility is used to modify a partition table of a disk device. Any

changes made while working within the application are stored in memory

until the changes are written to the disk’s partition table.

The command fdisk <device_path> is used to manage partitions

for a specific device. For example, the command fdisk /dev/sda

allows us to modify the partition tables of /dev/sda .

EXAM TIP The Linux+ certification exam focuses on fdisk because it

is the most often used command-line utility to partition hard drives.

Prior to making changes to a device, know its current configuration. For

our purposes, we will use the command fdisk -l /dev/sdb as

shown earlier in Figure 7-7.

Table 7-1 provides a summary of the columns used to describe a

partition.

Table 7-1 fdisk Partition Columns

Reviewing the information, we find that this disk device contains four

primary partitions. One of the primary partitions is an extended partition

that contains three logical partitions.

NOTE When partitioning a disk device, the extended partition should be

the last primary partition and should take up the remaining available space

on the drive.

With fdisk running, we now have a command prompt we can use to

enter fdisk commands. You can enter m to view a help menu of

available commands, as shown here:

Creating a Partition

If you want to create a new partition, enter n and then specify whether you

want to create a primary (p), extended (e), or logical (l) partition.

NOTE You can create logical partitions only in an extended partition.

If an extended partition does not exist, you will not be offered the choice

to create a logical partition.

To create a primary partition, enter p when prompted. To create an

extended partition, enter e . You are then prompted to specify a partition

number:

Pressing the Enter key will apply the default partition number. The

default partition number will be the next available partition. You can

specify any number between 1 and 4 . However, you cannot use a

partition number that has been allocated.

The next entry is the starting sector. Usually you’ll want to accept the

default. Although you can change the starting sector, you must be mindful

of the following: If you choose a sector in an existing partition, you will

receive a “value out of range” error. You can also choose a starting sector

number greater than the default, but this wastes disk space. Many years ago,

data was placed on the most efficient parts of the drive to improve

efficiency and speed, thus causing a gap. This practice is no longer

necessary.

You can specify the size of the partition by entering the number of

sectors, or the size in kilobytes, megabytes, or gigabytes.

After specifying the size, you should verify your new partition by

entering p . This displays all partitions for the disk, as shown in the next

example:

You can verify the size by multiplying the number of blocks by the

current block size or determine the number of sectors used and multiply by

the sector size.

The ID column contains a filesystem code. By default, partitions are

assigned a partition code of 83 . If you are creating a partition that will

contain a different filesystem type, you must change the filesystem code.

This is done by entering t and then entering the number of the partition

you want to change. If you don’t know the partition code, enter a lowercase

l to list all valid partition codes (ID) and their descriptions.

For example, the partition code for a Linux swap partition is 82 . To

change the type of the partition, you could enter t , specify a partition

number to change, and then type 82 for the partition code to change the

partition to a swap partition.

Deleting a Partition

To delete partitions using fdisk , enter d at the command prompt and

specify the partition number to delete. Any data that resides on the partition

will be lost once you commit the change to disk.

Writing Changes to the Partition Table

Once you have finished editing the partition table in memory, you must

write the new partition table to disk using the write (w) command, like so:

Once the partition table is written, the write command will attempt to

update the kernel with the new information, but if any of the disk partitions

are mounted, the kernel update will fail with error:ioctl device

busy .

To force the kernel to read the new partition table into memory, execute

the command partprobe or partprobe <device_path> .

parted Partitioning Utility

To use the parted command, enter parted at the shell prompt and

then use the select command to specify which disk to manage. Be very

careful, though, because parted will automatically select the first hard

disk, the one with your system and home partitions on it. Accidentally

deleting a partition on this disk could be bad because you will lose all your

data! If you intend to work on a disk other than /dev/sda , be sure you

use the select subcommand.

CAUTION The parted utility writes partition changes immediately to

the disk. Be absolutely certain of the changes you want to make when using

parted !

After selecting the appropriate hard disk, create a new partition using the

mkpart subcommand at the parted prompt. You need to specify the

following:

 The type of partition to be created For example, to create a standard

Linux partition, you would specify a value of linux .

 The starting point on the disk for the partition (in megabytes) For

example, to create a partition that starts at the 1GB point on the disk, you

would specify a value of 1024 .

 The ending point on the disk for the partition (in megabytes) For

example, to create a partition that ends at the 11GB point on the disk, you

would specify a value of 11264 .

To view the partitions that have been created on the disk, you can use the

print subcommand at the parted prompt. In the following example,

a 10GB partition is created on the second hard disk in the system

(/dev/sdb):

You can also use the following commands at the parted prompt to

manage disk partitions:

 To rename a partition, enter name <partition_name> .

 To move a partition to a different location on the disk (which is a very

handy thing to be able to do), enter move <partition>

<start_point> <end_point> .

 To resize a partition on the disk (another very handy thing to be able to do),

enter resize <partition> <start_point> <end_point> .

 To delete a partition from the disk, enter rm <partition> .

gdisk Partitioning Utility

To manage GPT partitions, use the gdisk utility. gdisk understands

extensible firmware interface (EFI) hard drive structure. The utility can be

used to perform the following tasks:

 Convert an MBR partition table to a GPT partition table.

 Verify a hard disk

 Create and delete GPT partitions

 Display information about a partition

 Change the name and type of a partition

 Back up and restore a disk’s partition table

For example, to add a GPT partition to a second disk, first switch to the

root user and enter gdisk /dev/sdb at the shell prompt. gdisk

uses many of the same command options that are available for the

fdisk ’s command. Enter ? to view a list of gdisk subcommands, as

shown here:

To add a new partition to the disk, enter n at the gdisk prompt. You

are then prompted to specify the following:

 The partition number Partition numbers are sequential. EFI permits

partition numbers from 1 to 128 . You may supply a unique partition

number or accept the suggested partition number.

 The size of the partition You can either specify the beginning and ending

sectors of the partition or specify where on the disk you want the partition

to start and end (such as at the 10GB and 20GB points on the disk).

 The type of partition The partition type numbers with gdisk are

different from those used with MBR partitions. For example, to create a

Linux partition, use a partition type of 8300 . Press either uppercase L or

lowercase l at the gdisk prompt to view a list of all possible partition

types and their codes.

This process is shown in the following example:

Once this is done, enter p at the gdisk prompt to view a list of the

partitions on the disk. As with fdisk , the changes you make with

gdisk are not actually committed to disk until you write them. To accept

the changes made to the disk partitioning, press w at the gdisk prompt.

To delete a partition, enter d . To change a partition’s type, enter t and

then enter the partition type code to use. To quit and start over without

saving any changes, enter q instead.

Block Device Encryption

Block device encryption protects data confidentiality on the block device,

even if the device is removed from the system, by encrypting data as it is

written and decrypting data as it is read. To access the device, you must

enter a passphrase during system startup to activate the decryption key.

Creating an Encrypted Block Device

Linux Unified Key Setup (LUKS) supports physical volumes, logical

volumes, RAID, and, of course, physical block devices.

Use the command dd if=/dev/urandom of=<device_name>

to place random data on the block device. Placing random data on a hard

drive makes it difficult for an attacker to distinguish between real and

random data.

Use the command cryptsetup luksFormat <device> (see

Figure 7-11) to format the device as an encrypted device. After you’ve

entered the command, you are asked to verify that you know all data will be

destroyed, and you must respond YES to proceed. After you enter the

passphrase twice, the device will be formatted.

Figure 7-11 Encrypting a block device

Each encrypted block device is assigned a UUID, which is used to give

the encrypted device a device mapper name that’s used to access the

contents of the device.

The command cryptsetup luksUUID /dev/<device_name>

(line 1 in Figure 7-12) illustrates how to obtain an encrypted block device’s

UUID and display it. The command crypsetup luksOpen

<device> <device_name> (line 4 in Figure 7-12) creates a device

mapper name. Notice that luks-<UUID> is used as a device name. This

example uses the same UUID as the encrypted block device. This is certain

to provide a unique device mapper name. You can use the command ls -

l /dev/mapper to verify the device name has been created.

Figure 7-12 Naming the encrypted device

Creating Filesystems

A filesystem manages the storage and retrieval of data. Linux supports

multiple filesystems via kernel modules and an abstraction layer called the

virtual filesystem (VFS).

In this section you will learn the following about filesystems:

 Available filesystems

 Building a filesystem

 Mounting a filesystem

 Mounting a filesystem automatically at boot

 Unmounting a partition with umount

Available Filesystems

To use a specific filesystem type, the appropriate kernel module must be

available. To determine which filesystem modules are available, execute the

following command (see Figure 7-13) :

Figure 7-13 Displaying the available filesystems

ls -l /lib/modules/$(uname -r)/kernel/fs

To determine which kernel filesystem modules are currently loaded,

execute the command cat /proc/filesystems . The term nodev

(no device) in Figure 7-14 indicates the filesystem is not located on a block

device but is loaded in memory.

Figure 7-14 cat /proc/filesystems command output

The command blkid , shown in Figure 7-15, displays the UUID and

filesystem type of a partition.

Figure 7-15 blkid command output

Building a Filesystem

Once you create a partition, prepare it for storing data. To do this, create a

filesystem on the partition. This is accomplished using one of several

commands. In this part of the chapter, we look at mkfs , xfs , btrfs ,

and mkswap .

Table 7-2 describes a few filesystem types.

Table 7-2 Filesystem Types

Using mkfs to Create a Filesystem

The mkfs utility is used to make an ext2 , ext3 , or ext4 filesystem

on a partition. Specify which filesystem to use with the -t option and the

type of filesystem. For example, to create an ext4 filesystem on the first

partition of the second hard drive, enter mkfs -t ext4 /dev/sdb1 .

Here is an example:

Here are some items to note in the preceding output:

 Block size=4096 This specifies that the block size is 4KB. This

value was determined to be optimal for the small 8GB partition that the

filesystem was created on in this example. Smaller partitions will have

small block sizes.

 524288 inodes, 2096474 blocks The filesystem has a

maximum of 524,288 inodes and 2,096,474 blocks. This means it can hold

a maximum of 524,288 files on the partition. Once 524,288 files are

created, no more files can be added, even if there’s free disk space

available. If you multiply the total number of blocks (2,086,474) by the

block size (4,096), you can calculate the total size of the partition (in this

case, about 8GB).

 Superblock backups stored on blocks: 32768, 98304,

163840, 229376, 294912, 819200, 884736, 1605632 A

superblock lists filesystem metadata and is the roadmap into the entire

filesystem. If the superblock is damaged, the filesystem becomes

inaccessible. The superblock may be restored from copies found in each

block group.

Filesystems are divided into block groups (originally called cylinder

groups). Block groups manage smaller sections of the filesystem. Each

block group contains data blocks, a copy of the superblock, block group

metadata such as inode tables, and maps to data blocks.

Modify a Filesystem Using tune2fs

The command tune2fs is used to adjust various filesystem parameters

on ext2, ext3, and ext4 filesystems. Table 7-3 details some

options to use.

Table 7-3 tune2fs Command Options

The command tune2fs -L places a label on the filesystem:

Creating an XFS Filesystem

The Extents File System (XFS) was created by Silicon Graphics (SGI) for

its IRIX operating system. It’s a very fast, flexible filesystem. It has been

ported over to run on Linux as well, although in my opinion it doesn’t

function under Linux as well as it does under IRIX.

Creating an XFS filesystem is very easy. It is done in the same manner

as creating ext x filesystems using the mkfs command. First, create a

standard Linux partition (type 83) using fdisk . Then, at the shell

prompt, enter mkfs.xfs <device> or mkfs -t xfs <device> .

Use the xfs_admin command to change parameters and administer

XFS filesystems. Running xfs_admin -L <label> <device> sets

the filesystem label.

Creating a BTRFS Filesystem

The B-tree File System (BTRFS) provides copy-on-write (COW) and

logical volume features. It’s a very fast, flexible filesystem designed to

scale to storage that is required and is the current default filesystem on

SUSE Linux.

Creating a BTRFS filesystem is straightforward. First, create a standard

Linux partition using fdisk , parted , or gdisk . Then, at the shell

prompt, enter mkfs.btrfs <device> .

To administer a BTRFS filesystem, use the btrfs command. Running

btrfs filesystem show displays information about the btrfs

filesystem on the computer.

Managing Swap Space

System memory may be physical RAM (random access memory) or virtual

memory. Running applications are stored in RAM. Swap space is virtual

memory created on block devices.

When RAM becomes full, some memory must be released to make room

to execute additional programs. To do this, memory management software

will take pages of data stored in RAM that are not currently being used and

swap them to virtual memory.

Creating a Swap Partition To create a swap partition, you must first add a

partition of type 82 . Executing the mkswap command creates a swap

area on a partition. The syntax for this command is mkswap

<device_path> . For example, mkswap /dev/sdb2 produces the

following output:

Even though you have created a swap partition, the swap space is not

available to the operating system until enabled. Before enabling the newly

created swap space, execute the command free , which displays the total

amount of memory and swap space available and used (see Table 7-4).

Table 7-4 free Command Output

Next, you can execute the command swapon -s to determine swap

partitions currently in use. Execute the command swapon

</device_path> to turn on the newly created swap space and then

execute the free and swapon -s commands to verify the swap space

is working.

The priority of a swap filesystem determines when it will be used.

Higher-priority swap filesystems are used first. If the user does not specify

a priority when creating the swap filesystem, the kernel will assign a

negative priority number.

To set a priority for a swap space, add the option -p

<priority_number> . For example, the command mkswap

/dev/sdb2 -p 60 would assign a priority of 60 to the swap

filesystem on /dev/sdb2 .

Swap partitions with the same priority are accessed in a round-robin

fashion. To increase the efficiency, consider creating multiple swap

partitions with the same priority and using the highest priority number.

To disable an existing swap partition, enter swapoff <device> at

the shell prompt (for example, swapoff /dev/sdb2).

Creating a Swap File

If you do not want to create a new swap partition but require additional

swap space, you can create a swap file. To do so, use the dd , chmod ,

mkswap , and swapon commands. Use the dd command to create the

file by copying input from the file /dev/zero and writing it to another

file.

CAUTION One euphemism of the disk-to-disk copy tool dd is disk

destroyer. Be careful using this command!

For our purposes we will use the dd options displayed in Table 7-5.

Table 7-5 dd Command Options

The following command creates a 500MB file called swapfile in the

directory /root :

EXAM TIP The dd tool lacks a standard progress bar. To view progress

of the dd session, send the kill signal -SIGUSR1 or -10 to the

running dd process. The kill and killall commands are discussed

in Chapter 9.

Next, change the permissions of the file to 600 so that it’s readable and

writeable only by root . These permissions do not limit user access to the

file as swap space; they just prevent users from modifying swapfile

using an editor such as vi .

chmod 600 /root/swapfile

Place a swap filesystem on the file /root/swapfile by executing the

mkswap command:

mkswap /root/swapfile

To make the new swap space available, execute the following command:

swapon /root/swapfile

Now you have added swap space in a way that is much simpler than

making swap space available on the hard drive you are currently using.

Should you no longer need the swapfile , disable it with the swapoff

command, and delete the swapfile .

Troubleshooting Journaled Filesystems

One benefit of journaled filesystems like ext4 and xfs is that they have

fast bootup recovery times after server interruption. If boot recovery is

taking hours and days after an accidental unplug of the server, verify the

system is not running an ext2 filesystem by running df -hT to display

the filesystem type:

This example displays that /dev/sdb1 is an ext2 filesystem. This

can be converted to the journaled ext3 type filesystem by running

tune2fs -j /dev/sdb1 as root .

Mounting a Filesystem

A mount point is a logical connection between a directory and a filesystem,

and the connection is made using the mount command. This allows users

to access a filesystem on a storage device.

Prior to mounting a partition, create a new directory, which will become

the mount point. For example, you might create the directory /public

and have that directory point to partition /dev/sdb1 .

The directories /mnt and /media serve as temporary mount points.

The /mnt directory holds mount points for temporarily automounted

filesystems from a network filesystem, and /media would be the mount

point for temporarily mounted media such as optical or USB flash drives.

Using the mount command requires root access. Run the following

command syntax to create a temporary mount point:

The following command would create a link from the directory

/public to the ext4 filesystem on the first partition on the second

hard disk in the system:

Now, whenever you execute the command cd /public , you will access

the data stored on /dev/sdb1 .

mount Command Options

The -o option with the mount command includes a variety of mounting

suboptions. For example, use -o ro to mount the partition as read-only.

See the mount man page for a complete listing of all the available

options. Table 7-6 describes the mount command options.

Table 7-6 Mount Options

The mount command with no switches displays mounted filesystems.

You can look through the output to verify that a device is mounted. The

following line from the output of the mount command indicates that

/dev/sdb1 is mounted on /public and uses the ext4 filesystem:

The command cat /proc/mounts displays a list of mounted

filesystems. To view a specific mount point, execute either cat

/proc/mounts | grep < mount_point> or mount | grep

<mount_point> .

To remount a filesystem with new options, execute the following

command as the root user:

Then, running the command mount -o remount,ro /public

will remount the device associated with the /public mount point as

read-only.

Mounting Removable Media

All Linux distributions support external storage devices. When a removable

device is plugged in and enumerated via uevent , an entry is made into

/var/log/messages .

If a udev rule or automatic mount information is available for the

device, the device name and filesystem mount point will be automatically

applied. If the device needs to be enumerated, you can view device name

details by executing the command dmesg . To avoid looking through the

entire log, you can use the command dmesg | tail -30 to view the

last device enumerated. Other commands such as lsblk and lsusb

may be helpful.

Once you have determined the device name, create a partition and mount

the device onto an empty directory (ideally). Mounting devices this way is

great until reboot. You will have to mount the devices again. To ensure that

they are available at boot time, you will need to update a configuration file,

as discussed next.

Mounting Filesystems Automatically at Boot

Devices can be automatically mounted by creating an entry in the

filesystem table named /etc/fstab or by creating a mount system unit.

Adding a Mount Point in /etc/fstab

The file /etc/fstab contains the mount parameters for a device.

EXAM TIP Prior to making changes in /etc/fstab , make a backup.

Errors in /etc/fstab can prevent your system from booting, but you

can recover a backup version of /etc/fstab by booting in rescue

mode, as will be discussed in Chapter 9.

Run the command cat /etc/fstab to view the contents of

/etc/fstb , as shown in the following example:

To specify a swap priority, add pri=# after specifying swap as the

filesystem, as shown here:

Table 7-7 describes the fields in /etc/fstab .

Table 7-7 Fields in the /etc/fstab File

If a device has either the auto or defaults option, that device will

be mounted at boot or whenever the command mount -a is executed.

If a device record exists in /etc/fstab , it may be mounted by

executing the command mount <device> or mount <mount

point> or unmounted by executing the command umount <device>

or umount <mount_point> .

Adding a Mount Point as a Mount Unit

You may also automatically mount a device by creating a systemd

mount unit (see Figure 7-16). User-defined units are placed in

/etc/systemd/system . After making these changes, execute the

systemctl daemon-reload command. More on managing system

features with systemd and systemctl is provided in Chapter 9.

Figure 7-16 Mount by systemd unit file

The filename for the unit must be the same as the mount point. In Figure

7-16, the filename for the mount point LabExercises is

LabExercises.mount.service .

Mounting an Encrypted Device

In order to automatically mount an encrypted device, an entry for the device

must be made in the file /etc/crypttab . If it does not exist, as user

root , create the file with 744 permissions.

Each record is divided into three space- or tab-delimited fields, as

detailed in Table 7-8.

Table 7-8 Fields in the /etc/crypttab File

Once you have made an entry in /etc/crypttab , create an entry in

/etc/fstab using the encrypted block device’s device name.

Unmounting a Partition with umount

The umount command (notice, not unmount) writes whatever device

information is in memory to the device and then removes the mount point.

You cannot unmount a filesystem if any user is using the filesystem.

The command fuser -vm <mount_point> displays users and

processes accessing a filesystem. The command fuser -vm /home

displays the user and process accessing the filesystem mounted on the

directory /home .

To unmount a partition, simply enter umount followed by the device

or the mount directory for the partition. To unmount /dev/sdb1 from

the mount point /public , for example, enter umount /dev/sdb1 or

umount /public . Here is an example:

umount /dev/sdb1

Troubleshooting Mounts

Mounting options can affect how a filesystem responds to users. If after

mounting the filesystem a user cannot save their work, it could be that the

filesystem was mounted read-only. Verify mounting options by running the

mount command, as shown in the following example. If the filesystem

was mounted read-only, remount the filesystem as read-write.

The preceding example shows that the / dev/sdd1 filesystem is

mounted onto /lee-st as read-only. To resolve the issue, as root run

mount -o remount,rw /dev/sdd1 /lee-st to convert the

mount to read-write.

Troubleshooting Corruptions and Mismatches

Running fsck will repair most filesystem corruptions. If you see an error

message such as Corrupt group descriptor , answer YES to all

of the fsck questions. The filesystem will mount afterward in most cases

before having to go to backup tapes.

Another reason filesystems may not mount is a mismatch of settings in

/etc/fstab . If you are mounting an ext4 type filesystem but have it

defined as ext3 in /etc/fstab , it will not mount correctly. In the

following example, /dev/sdd2 was created as an ext4 filesystem:

Change the ext3 setting to ext4 in /etc/fstab to resolve the

mismatch issue.

Managing Linux Filesystems

Just as with any other operating system, you need to monitor, maintain, and

sometimes troubleshoot your Linux filesystems. In this section, we cover

the following topics:

 Using df to verify free disk space

 Using du to verify directory usage

 Reporting filesystem status using dumpe2fs

 Verifying XFS filesystems using xfs_admin

 Checking the filesystem integrity

Using df to Verify Free Disk Space

In order to add files to a filesystem, you must have disk space and available

inodes. The df (“disk free”) utility will display available space

information for mounted filesystems, as shown here:

The command df <filename> displays information about the

partition on which the specified file resides, as in this example:

The default output displays size in blocks. The -h option displays

space statistics in human-readable format:

Adding the -T option will display the filesystem type, as shown here:

When a file is created, it is assigned an inode number. If a filesystem

runs out of inodes, files can no longer be created, even if space exists. The

df -i command lists inode usage of mounted filesystems:

Using du to Verify Directory Usage

Another utility you can use to monitor disk space usage is the du

(“directory usage”) utility. Its function is to provide you with a summary of

disk space usage of each file, recursively, for a specified directory. The

syntax is du <filename or directory>. Some useful options with du

include the following:

 -c Used to calculate a grand total

 -s Used to calculate a summary for each argument

 -h Used to display output in human-readable format

The -h option is the most useful. Here is an example of viewing the

space used by files in the /tmp directory in human-readable format:

Troubleshooting Low Disk Space Issues

When running low on disk space, use the df and du commands together

to find files that can be deleted. Running df shows how much free disk

space you have. Next, run du -sh * on all the directories to see a

summary of which directories are using the most space. In the following

example, /home/ted would be a great place to look to recover disk

space.

An ideal area to recover disk space is under /var/log . Log files can

grow and grow. If not properly rotated, they can eventually fill the hard

drive and cause system failure. Make sure to enable log rotation using the

logrotate command to mitigate this issue.

Reporting Filesystem Status Using dumpe2fs

A filesystem uses a superblock and cylinder groups to manage the

filesystem’s metadata. The output of the dumpe2fs command

shows the statistics stored in both the superblock

and block groups. The -h option, dumpe2fs -h

<device_path> , limits the output to the information

stored in the filesystem’s superblock.

Verifying XFS Filesystems Using xfs_admin

XFS has several administrative tools, including the df command.

xfs_admin modifies various parameters (detailed in Table 7-9) of an

unmounted XFS filesystem.

Table 7-9 Sample of xfs_admin Options

The command xfs_info , shown in Figure 7-17, displays filesystem

geometry, such as the inode size (isize) and block size (bsize).

Figure 7-17 xfs_info command output

Checking the Filesystem Integrity

The Filesystem Check utility, fsck , checks the integrity of a filesystem.

To use this utility, you must first umount the filesystem to check. Then

enter fsck <device> at the shell prompt. For example, to check the

filesystem on the first partition of the second hard drive in your system, you

would enter fsck /dev/sdb1 . The fsck utility then checks the

filesystem and displays a report, as shown here:

Notice in this example that e2fsck was run. That’s because fsck is

a front end to several error-checking utilities. fsck chooses the correct

utility based on the type of filesystem. If the utility encounters errors, it

displays a code that represents the sum of the errors encountered.

After the check is complete, remount the partition using the mount

command.

Troubleshooting Input/Output and Device Issues

Poor performance can be improved on storage devices such as NVMe, SSD,

SCSI, and SATA devices by adjusting I/O scheduling values. You can

configure settings in /sys/block/sda/queue/scheduler to

improve performance on storage devices, as shown here:

The none value implements a first-in, first-out (FIFO) scheduling

algorithm and is good for enterprise applications. The mq-deadline

scheduler sorts I/O requests in batches and is best for virtualized guests.

The bfq scheduler uses a fair-queuing mechanism and is best for desktop

systems. The kyber scheduler tunes itself for best latency results and is

best for fast devices such as NVMe and SSD devices.

To change the setting to bfq , for example, run the following:

Analyze performance and compare scheduler settings by running

ioping and iostat . While running your most important applications,

analyze iostat output, as follows:

Improve latency, I/O waits, low throughput, and low IOPS by changing

from bfq to kyber , mq-deadline , and none . Compare results

and select the scheduler that provides the best overall performance for your

applications.

Managing Quotas

Quotas are a method of limiting the number of files or the amount of disk

space a user or group may use. Quotas are applied to filesystems. In this

section you will learn the steps for setting up quotas, which include the

following:

 Editing /etc/fstab to set up quotas

 Creating quota database files

 Assigning a quota to users and groups

For our discussion we will create quotas on the /home

filesystem .

Editing /etc/fstab to Set Up Quotas

You must enable quotas by filesystem. To do this, add the filesystem option

usrquota to monitor user quotas and/or grpquota to manage group

quotas. The entry will look like this within /etc/fstab :

Once you make the changes, you must remount the filesystem. You can

do this by executing the command mount -o remount

<filesystem_name> . If the filesystem is busy, you can use the

command mount -f -o remount < filesystem_name> . In our

example the command would be mount -f -o remount /home . Be

aware you may be kicking someone out of a file.

Another method of working with a busy filesystem is to execute a

command that lists open files, like lsof | grep

<filesystem_name> , to determine the process IDs and users who are

using the filesystem. In our example the command would be lsof |

grep home . At that point you can contact the users and ask them to close

their files and then remount the filesystem.

Creating Quota Database Files

Once the filesystem is repaired, you must create the quota database files in

the top directory of the filesystem.

For users we will use the quotacheck command to create the user

database file aquota.user and/or the group database file

aquota.group . The quotacheck command uses the options listed

in Table 7-10.

Table 7-10 quotacheck Command Options

The command quotacheck -cug /<filesystem_name> will

create the user and group database files in the top directory of a filesystem.

To create the files in /home , you would execute the command

quotacheck -cug /home .

Assigning a Quota to Users and Groups

Assigning a quota uses three elements: hard limit, soft limit, and grace

period. The number of files is specified in the number of inodes (an inode is

created for each file), and the size is specified in blocks, as shown here

using the edquota command:

The hard limit specifies an exact limit. For our example we will assign a

hard file limit of ten files and a hard limit size of 20MB. The soft limit

specifies a limit that may be exceeded for the number of days specified by

the grace period. The grace period is the number of days after the soft limit

is reached that the user or group has to go below the soft limit. After the

grace period, the soft limit becomes the new hard limit, requiring the user or

group to remove some files before new ones can be created.

Setting a Quota for a User or Group

The command edquota -u <user_name> is used to set a quota for a

user, and the command edquota -g <group_name> is used to

specify a quota for a group. Or, you can create a quota for a user by using

an existing user as a prototype. For example, to copy and paste the quota

settings for user1 to user2 , execute the command edquota -p

user1 user2 .

To change the grace period, execute the command edquota -t . You

can specify the time in days, hours, minutes, or seconds.

Reporting on Quotas

There are two commands to gather quota reports:

 repquota Produces quota reports for a filesystem

 repquota -a Prints a quota report for all users and groups on all

filesystems

Use the option -u (users) or -g (groups) to isolate the report to users

or groups, respectively. The command repquota

<filesystem_name> reports on both user and group quotas for a

filesystem.

The quota command displays quota information for a specific user or

group. Users can only display their own quota information by executing the

command quota . The user root , however, can display any user’s quota

information.

Troubleshooting Quotas

Users may find that they cannot create any more files. This could mean they

ran out of disk space or inodes. They can check this by running the df -h

command or df -i command, respectively. But, after learning disk space

and inodes are not the problem, they should run the quota command to

list their quota limits:

In this example, user ianmausi has exceeded the soft limit on blocks.

With just this information the user can create more files; but the inodes have

reached the hard limit, and this is the reason why the user cannot create

more files.

Exercise 7-1: Managing Linux Partitions

In this exercise, you practice working with Linux partitions.

VIDEO Please watch the Exercise 7-1 video for a demonstration on how

to perform this task.

You can perform this exercise using the virtual machine that comes with

this book. You must be logged on as user root (password password).

Follow these steps:

CAUTION Be sure to create a snapshot before proceeding.

 View the partition table of / dev/sda using the fdisk -l

/dev/sda command.

 View the partition table of / dev/sda using parted :

Execute the parted command.

 Type select /dev/sda .

Type print .

 Type quit to exit parted .

 Create a Linux swap partition on /dev/sda :

Type fdisk /dev/sda .

 Enter n to create a new partition.

Accept the default partition type.

 Accept the starting sector.

Specify the size as 500MB.

Use the t command to change the partition code:

 Enter the partition number to change.

 Enter 82 for the partition code.

Use the p command to verify the partition is created and has the correct

partition code.

 Use the w command to write the changes to the partition table.

Notice the kernel was not updated. Do not run partprobe .

 Create a swap partition by executing the mkswap <device_name>

command. The device name should be / dev/sda8 .

Notice the error message.

 Execute the partprobe command.

Execute the mkswap <device_name> command.

 Type the command swapon -s to determine existing swap spaces.

 Type the command free to determine the total amount of swap space and

how much swap space is free.

 Execute the command swapon /dev/sda8 and then use the swapon

-s command to test that the swap space has been enabled.

 Execute the command free to see the difference in swap space.

 Disable /dev/sda8 swap space by executing the command swapoff

/dev/sda8 (verify the results of this command).

 Using the steps in step 3, create the following partitions (size 500MB) in

the order specified:

Create one Linux partition (partition code 83 ; device name should be

/dev/sda9).

 Create two LVM physical volumes (partition code 8e ; device names

should be /dev/sda10 and /dev/sda11).

Create two software RAID partitions (partition code fd ; device names

should be /dev/sda12 and /dev/sda13).

 Write the partition table.

 Create an ext4 filesystem on / dev/sda9 by running mkfs.ext4

/dev/sda9 .

 Use the command dumpe2fs -h /dev/sda9 to display the

filesystem superblock.

 Create the directory /public by running mkdir /public .

 Mount the filesystem on /dev/sda9 to the directory /public by

executing the mount -t ext4 /public command.

 Use the command mount or mount | grep public to ensure the

filesystem is mounted.

 Change the directory to /public and execute the touch

file{1,2,3} command.

 Verify the files have been created by executing the ls -l /public

command.

 Make your current working directory /public by running cd

/public .

 Unmount the filesystem by typing the umount /public command.

 Determine which user or process is accessing the filesystem attached to

/public by executing the fuser -vm /public command.

 Execute the cd command and verify with the pwd command you are no

longer in /public .

 Unmount /public and verify it is no longer mounted by running

umount /public .

 Execute the fsck /dev/sda9 command.

 Use the command tune2fs -L public /dev/sda9 to add the

label public to the filesystem on /dev/sda9 .

 Execute the blkid /dev/sda9 command.

 Execute the findfs LABEL-public command.

 Mount the filesystem on / dev/sda9 by executing the mount -L

public /public command.

 Test that the filesystem has been mounted by running ls /public .

 Unmount /dev/sda9 .

 Create a copy of /etc/fstab by executing the cp /etc/fstab

/etc/fstab.lab command.

 Execute the command vi /etc/fstab and go to the last line by using

the key sequence Esc-G . Enter o to insert text into a newline:

Enter several hash marks (####) and press Enter . The hash marks are a

visual reminder of where you have entered new configuration information.

Enter the following line: /dev/sda9 /public defaults 0 0

 Save the file by using the Esc :wq sequence.

Type the mount -a command.

 Test to see that the filesystem in /dev/sda9 has been mounted.

 Unmount /dev/sda9 and enter vi /etc/fstab .

Place your cursor on the line configuring /dev/sda9 .

 Use the key sequence Esc i to place vi in insert mode.

Place a hash mark (#) at the beginning of the line so the line will be

ignored.

 Use the key sequence Esc o to open a line below.

Type LABEL=public /public defaults 0 0 .

Exit vi by executing the Esc :wq command.

Use the mount -a command to remount /dev/sda9 using its label.

Chapter Review

In this chapter we discussed what a partition is and the differences between

MBR and GPT partitioning. From there, we talked about the different

partition types and how to manage partitions. After creating the filesystem,

you learned how to create a logical relationship between a directory and a

filesystem placed on a partition as well as how to manually and

automatically mount filesystems.

Here are some key takeaways from this chapter:

 You must partition and format a disk before you can mount it in the Linux

filesystem.

 The fdisk utility is used to create an MBR partition on hard disks.

 You must set the partition type when partitioning disks.

 Partition changes are only saved in memory until you commit them to disk.

 Newer Linux distributions support GPT partitions, which are designed to

address many of the shortcomings of the older MBR-type partitions.

 To manage GPT partitions, use the gdisk utility or the parted utility.

 After partitioning a disk, you need to format it with mkfs .

 After formatting a disk, you can mount it using the mount command.

 You can also use cat /proc/mounts to view mounted filesystems.

 You can unmount a mounted filesystem using the umount command.

 All filesystems must be unmounted before Linux is shut down.

 Mounted filesystems won’t be remounted on reboot unless they have an

entry in the /etc/fstab file.

 The /etc/fstab file specifies mount points and other options for

specific devices.

 You can monitor disk space and inode usage using the df and du

utilities.

 The fsck utility is used to check and repair filesystems.

 The tune2fs utility is used to adjust various filesystem parameters on

ext2, ext3, and ext4 filesystems.

 The dumpe2fs utility can display superblock and block group

information for ext filesystems.

 The xfs_admin utility is the XFS equivalent of tune2fs .

 The xfs_info utility displays useful information about XFS filesystems.

 Removable devices must be mounted in the Linux filesystem before they

can be accessed.

 /etc/fstab is used to automatically mount devices when the

mountall or mount -a command is executed.

Questions

 You need to use fdisk to create an MBR partition for the fourth SATA

hard drive in your system. Which is the correct command to do this?

 fdisk /dev/hdd

fdisk /dev/sdd

 fdisk /dev/sda4

 fdisk /dev/sdb2

 You’ve used fdisk to create a new MBR partition on the second hard

drive in your Linux system. You want to use the partition as a second swap

partition for your system. Which partition type do you need to change it to?

 83

82

 85

 1

 You need to format the first partition on the fourth SATA hard disk using

the ext3 filesystem. Which is the correct command to do this?

 mkext3fs /dev/sdd1

mkfs -t ext3 /dev/sdd1

 mkfs -t ext3 /dev/sda4

 mkreiserfs -t ext3 /dev/sdd1

 You’ve created a new swap partition (/dev/sdb1) using the fdisk

utility. You need to format and enable this partition. Which commands

should you use to do this? (Choose two.)

 mkswap /dev/sdb1

mkfs -t swap /dev/sdb1

 swapon /dev/sdb1

 swapon -a

mkfs -t vfat /dev/sdb1

 You’ve created an ext4 filesystem on the first partition on the second

SCSI hard disk in your system and now need to mount it in

/mnt/extraspace in read-write mode. Which commands will do this?

(Choose two.)

 mount -t ext4 /dev/sda1 /mnt/extraspace/

mount -t ext4 /dev/sdb1 /mnt/extraspace/

 mount -a /dev/sdb1 /mnt/extraspace/

 mount -t ext /dev/sdb1 /mnt/extraspace/

mount -t ext4 -o ro /dev/sdb1 /mnt/extraspace/

 You have an ISO image file named discimage.iso in your home

directory and you want to mount it in the /mnt directory in your Linux

filesystem so that you can extract several files from it. Which command

will do this?

 mount ~/discimage.iso /mnt

mount -a ~/discimage.iso /mnt

 mount -t iso9660 ~/discimage.iso /mnt

 mount -o loop ~/discimage.iso /mnt

 You have mounted the /dev/sdb1 partition in the /mnt directory and

now need to unmount it. Which commands will do this? (Choose two.)

 umount /mnt

unmount /mnt

 umount /dev/sdb1

 mount --unmount /dev/sdb1

unmount /dev/sdb1

 Which file is used to automatically mount filesystems when the system

initially boots?

 /etc/mtab

/proc/mounts

 /etc/inittab

 /etc/fstab

 Which fstab mount option causes pending disk writes to be committed

immediately?

 async

sync

 rw

 auto

 Which command will provide you with a summary of inode consumption

on your /dev/sda2 partition?

 df -i

df -h

 df -hT

 du -inode

 The /dev/sda1 partition on your Linux system currently has no volume

label. Given that it is an ext4 partition, which command will set the label

to DATA ?

 dumpe2fs -L DATA /dev/sda1

tune2fs -L DATA /dev/sda1

 lsof /dev/sda1 --label "DATA"

 mkfs -t ext4 -L "DATA" /dev/sda1

 You are concerned about the condition of a hard drive containing a heavily

used ext3 disk partition (/dev/sda2). To ensure data integrity, you

want to increase the frequency of automatic fsck checks. Which utility

should you use to configure this?

 dumpe2fs

e2fsck

 fsck

 tune2fs

 You need to mount an optical disc in /media/dvd . Which command will

do this?

 mount -t iso9660 /dev/cdrom /media/dvd

mount -t dvd /dev/cdrom /media/dvd

 dvdmount -t iso9660 /dev/cdrom /media/dvd

 mount -t iso9660 /dev/cdrom ~/dvd

 You need to mount a USB flash drive on your Linux system. Given that

your Linux system currently has one SATA hard drive (/dev/sda), what

should be the flash drive’s device name?

 /dev/hdb

/dev/usb0

 /dev/sdb

 /dev/sda

 A performance-tuning engineer runs the following command:

cat /sys/block/sda/queue/scheduler

mq-deadline [kyber] bfq none

What command should the engineer run to change the scheduler setting to

bfq ?

 sed s/kyber/bfq/ /sys/block/sda/queue/scheduler

echo bfq < /sys/block/sda/queue/scheduler

 cat bfq > /sys/block/sda/queue/scheduler

 echo bfq > /sys/block/sda/queue/scheduler

Answers

 B. The fdisk /dev/sdd command uses the correct syntax to create an

MBR partition for the fourth SATA hard drive in your system. Answer C is

incorrect because /dev/sda4 represents the fourth partition of the first

hard drive.

 B. Type 82 defines a Linux swap partition. Type 83 represents a Linux

partition.

 B. The mkfs -t ext3 /dev/sdd1 command uses the correct syntax

to format the first partition on the fourth SATA drive using the ext3

filesystem.

 A, C. The mkswap /dev/sdb1 command is used to create the swap

filesystem, and the swapon /dev/sdb1 command enables it as a swap

partition.

 B, C. Either the mount -t ext4 /dev/sdb1

/mnt/extraspace/ command or the mount -a /dev/sdb1

/mnt/extraspace/ command will mount the /dev/sdb1 partition

in /mnt/extraspace/ .

 D. The mount -o loop ~/discimage.iso /mnt command

mounts the image file in the /mnt directory.

 A, C. Either the umount /mnt command or the umount

/dev/sdb1 command will unmount the partition from the filesystem.

 D. The /etc/fstab file is used to automatically mount filesystems at

boot.

 B. The sync option causes pending disk writes to be written immediately.

 A. The df -i command displays a summary of inode consumption for

all mounted filesystems.

 B. The tune2fs -L DATA /dev/sda1 command will set the volume

label to DATA .

 D. The tune2fs command with the -c option can be used to customize

the frequency of automatic fsck checks.

 A. The mount -t iso9660 /dev/cdrom /media/dvd command

uses the correct syntax on most distributions, assuming a symbolic link

named /dev/cdrom has been created that points to /dev/sr0 .

 C. The device will be referenced by /dev/sdb because there is one other

drive in the system.

 D. Running echo bfq > /sys/block/sda/queue/scheduler

will properly set the CPU scheduler to bfq from kyber .

CHAPTER 8
Configuring Volume Management

In this chapter, you will learn about

 Implementing logical volume management (LVM)

 Creating archives and performing compression

 Enabling redundant array of independent disks (RAID)

The digital footprint per person is expected to grow to over 15 terabytes.

—Curtis Tearte, IBM

As filesystems grow and become larger, systems must be designed to make

disk volumes manageable. Logical volumes allow administrators to create

disk space without downtime, and RAID speeds data throughput and

nullifies downtime by cutting the impact of disk failures. But it is still

important to protect data by making backups.

Data compression improves data speeds through networks and reduces

disk space use, thus cutting costs for organizations. And encrypted backups

make your data more secure.

In this chapter you will learn how to create, extend, and make instant

backups called snapshots in logical volumes. Next, you will discover

how to make backups more efficient and secure using compression and

encryption. Finally, you will configure software RAID solutions for Linux

to build resiliency into your organization.

Implementing Logical Volume Management

Logical volume management (LVM) is an option to use when partitioning

Linux hard disk drives. It provides an alternative to the traditional process

of creating disk partitions. Instead, volume groups are created from storage

devices in the system. From the volume group, space is allocated to specific

logical volumes that are managed by the LVM. Instead of mounting

partitions, administrators mount logical volumes at mount points in the

filesystem. This provides administrators with a great deal of flexibility

when allocating space on the system. For example, when a volume at

/home begins to run out of space, it is easy to reallocate space from a

spare volume group and “grow” it onto / home . That is very difficult to do

with traditional disk partitions!

LVM allows adding space with no downtime. For example, to add

capacity, simply install a new hard drive and then allocate its space to

/home . The size of the volume is increased on a live system without

backing up and restoring data as would be done with traditional partitions.

In this part of this chapter, we’re going to look at the following LVM

topics:

 LVM components

 LVM configuration

 LVM snapshots

 Extending LVMs

LVM Components

LVM creates a virtual pool of memory space, called a volume group ,

from which logical volumes can be created. Linux uses logical volumes just

like standard disk partitions created with fdisk . However, the way

logical volumes are defined is quite a bit more complex. The basic structure

of LVM consists of the following components:

 Physical volumes A physical volume can be either a partition or an entire

hard disk.

 Volume groups A volume group consists of one or more physical volumes

grouped together to form data pools. This means additional hard disks or

partitions can be added to the volume group whenever more storage space

is needed.

 Logical volumes A logical volume is defined from the volume group pool.

Logical volumes can be formatted with a Linux filesystem and mounted just

like physical partitions.

The way these components work together to provide storage for the

Linux system is shown in Figure 8-1.

Figure 8-1 LVM components

LVM Configuration

To create and mount logical volumes, first create physical volumes, then

volume groups, and finally logical volumes.

Creating LVM Physical Volumes

Disk partitions or even entire disks are physical LVM volumes. To use an

existing partition, set the partition type to Linux LVM (8e) with

fdisk , as shown here:

Once you have determined which disks and partitions to use, run the

pvcreate command at the shell prompt to define them as LVM physical

volumes. The syntax is pvcreate <device> . In the following

example, the first two partitions on /dev/sdb are defined as physical

volumes, as well as the entire /dev/sdc hard disk:

Next, use the pvscan -v command to view all physical volumes on

the system along with their size, as shown here:

NOTE If later a hard disk drive fails, use the pvmove utility to move the

data from the physical volume to be removed to another physical volume

defined in the system.

Next, use the pvs (or pvdisplay) command to display the physical

volumes:

Once the physical volumes are defined, you can create volume groups.

Creating LVM Volume Groups

The vgcreate utility is used to create volume groups on the system. The

syntax is vgcreate <volume_group_name>

<physical_volume1> <physical_volume2> (and so on). In the

following example, a volume group named DATA is created using the

sdb1 , sdb2 , and sdc physical volumes:

Notice in the output of the pvscan command that the three physical

volumes are now members of the DATA volume group. Use the vgs (or

vgdisplay) command to display the volume group:

After initially creating a volume group, use the following commands to

manage it:

 vgextend

 vgreduce

 vgremove

Once the volume group has been defined, you can create logical

volumes.

NOTE Users can still use the ln command to hard link files across the

volumes because a single filesystem is created with LVM. Use either the

rm command or the unlink command to remove a hard link. The

unlink command can only remove one file at a time, so globbing

characters such as *, ? , and [] will not work.

Creating LVM Logical Volumes

Use the lvcreate command to create logical volumes within a volume

group. The syntax is as follows:

lvcreate -L <volume_size> -n <volume_name>

<volume_group_name>

In the following example, two 7GB volumes (named research and

development , respectively) are defined from the DATA volume group:

Use the lvscan command to view the logical volumes defined, as

shown in the preceding example. Also notice that the two defined logical

volumes are from the volume group, which itself is created by pooling

together all the storage space from two disk partitions and one entire hard

disk drive. Pretty cool!

Use the lvs (or vgdisplay) command to display the logical

volumes:

To manage the logical volumes, use the following commands:

 lvreduce Reduces the size of a logical volume

 lvremove Removes a logical volume from the system

CAUTION Use extreme caution when working with lvreduce and

lvremove ! If the filesystem is larger than the size specified with

lvreduce , there is a risk of chopping off chunks of data. The

administrator should migrate any critical data to a different logical volume

before using lvremove .

Once the logical volumes are complete, you can create filesystems on

them and then mount them. Create a filesystem with mkfs , just as with

traditional partitions, using the following syntax:

mkfs -t <filesystem>

/dev/<volume_group>/<logical_volume>

Next, mount the logical volume using the mount command, just like

mounting filesystems on traditional partitions. Use the following syntax:

LVM Snapshots

Linux systems run 24 hours a day, 7 days a week, making it hard to find a

time in which to boot a system into single-user mode and get a clean

backup. LVM snapshots allow administrators to create consistent backups

on live systems, as well as allow systems to quickly revert to a clean state if

corrupted after a snapshot is made.

A snapshot represents the state of a volume at the time the snapshot was

taken, and it holds changes of the filesystem that occur over the life of the

snapshot.

Making Snapshot Volumes

From the 2GB that are left from the DATA volume group, you can allocate

snapshot space into a logical volume. Make sure to allow enough space to

hold anticipated data changes; otherwise, if it gets full, the data will be lost.

Use the -s or --snapshot flag with lvcreate to build the

snapshot:

To start using the snapshot, create a mount point to access the volume

and then mount the device using the mount command:

To remove snapshots, use the umount and lvremove commands:

This will make the filesystem unavailable and remove any saved data in the

snapshot.

Checking for Open Files

Although it is not necessary, some administrators feel more comfortable

stopping certain jobs, like databases or mail servers, before engaging their

snapshots. To observe which files are open for specific processes, use the

lsof (list open files) command.

One useful option is -p . Follow this option with the PID of the process

being monitored, and it will submit a listing of the files the process has

open:

Extending LVMs

As disk space is utilized, there becomes less and less space for users to

work. Increasing disk space in the past involved backing up the current

drive, installing a larger drive, and then restoring the system—a risky

process that could take an entire workday to accomplish if nothing goes

wrong.

Time and risk are reduced with logical volume management. Continuing

with our current example, use lvextend to extend the current filesystem

by 1GB and then use resize2fs to resize the filesystem to match, as

shown here:

LVM Troubleshooting

Logical volumes are activated by the kernel by default, but this can fail in

certain circumstances. In these rare cases, activate the logical volume using

the lvchange command using the -ay option to “activate” and answer

“yes” to the only question asked, “ Do you really want to

activate the volume? ” as follows:

Creating Archives and Performing Compression

One of the key roles administrators must perform is data backups. When an

organization puts thousands of hours of human effort into creating data,

securing that data is critical. One of the best ways to do this is to back up

the data to tape, disk, or cloud.

Hard drives have motors and other moving parts that slowly wear out

over time. In fact, hard drives have a mean time between failure (MTBF)

value assigned by the manufacturer. This value provides an estimate of how

long a drive will last before it fails. Basically, it’s not a matter of if a hard

drive will fail; it’s a matter of when .

There are several components to a backup plan. In this section, we’re

going to discuss the following topics:

 Selecting a backup medium

 Selecting a backup strategy

 Linux backup and compression utilities

Let’s begin by discussing how to select a backup medium.

Selecting a Backup Medium

Today, administrators use tape drives, hard drives, and the cloud to back up

their data. Tape drives use magnetic tape to store data. They store a lot of

data and are very reliable. However, magnetic tape does wear out after

years of use and is slower than backing up to disk.

Most businesses back up to disk or cloud. Hard drives are cheap. An

external 10TB hard drive costs less than US$300. Using external hard

drives for backups has the advantage of being much faster than tape drives.

Enterprises use a type of backup called virtual tape libraries

(VTLs) , which is a disk-based backup but the software “thinks” it’s tape.

Of course, backing up to the cloud provides the benefits of high

reliability and distance from the worksite, the latter of which is highly

useful in disaster recovery. For example, if an earthquake occurs around

corporate headquarters, the data is protected because the cloud backups are

stored in a different geographical region (assuming proper disaster recovery

planning).

EXAM TIP The rsync utility provides a hot-backup solution over

standard backups. The tool can be set up to synchronize locally or remotely

at defined periods set up within cron (every hour, for example). If the

main system goes down, simply switch over to the backup system.

Once the backup medium is selected, purchase the appropriate

equipment, and then connect and install it onto the system. Once everything

is in place, define a backup strategy.

Selecting a Backup Strategy

When creating a backup plan, select a backup type and determine what to

back up. First choose the backup type.

Selecting a Backup Type

Depending on the backup utility chosen, the system administrator can

implement at least three different types of backups:

 Full A full backup backs up all specified files, regardless of whether or not

they have been modified since the last backup. After being backed up, each

file is flagged as having been backed up. A full backup generally takes the

longest time to complete.

 Incremental An incremental backup backs up only the files that have been

modified since the last backup (full or incremental). After being backed up,

each file is flagged as having been backed up. This is generally the fastest

backup type.

 Differential A differential backup backs up only the files that have been

modified since the last full backup. Even though they have been backed up

during a differential backup, the files involved are not flagged as having

been backed up.

Running a full backup every time is thorough but exhaustive. However, a

full backup is the fastest to restore. Running daily incremental backups is

the fastest way to back up but the longest to restore.

Many administrators mix full with incremental or differential backups to

take advantage of the speed benefits. The restore order is important, so wise

administrators label their backups with the date, order, and type of backup.

Finally, make sure to verify backups. Most backup utilities provide the

option of checking backups after completion.

Determining What to Back Up

One option is to back up the entire system. This is safe but slow due to the

sheer amount of data involved. Instead, prioritize backing up only critical

data, such as user data and configuration files. The theory behind this

strategy is that in the event of a disaster, administrators can simply reinstall

a new system and then restore the critical data. Consider backing up these

important directories:

 /etc

 /home

 /root

 /var

Notice that this strategy doesn’t back up Linux or its utilities. Instead, it

only backs up configuration files, user data, log files, and web/FTP files.

Linux Backup and Compression Utilities

When working with Linux, there are a host of different utilities for

conducting backups. Many come with the operating system; others can be

obtained from third parties. For the CompTIA Linux+ exam, you should be

familiar with the tools that are common to most distributions and know how

to run them from the shell prompt. The following topics are covered in this

section:

 Using gzip , bzip2 , zip , and xz for compression

 Using tar and cpio for backups

 Using dd for disk cloning

Using gzip , bzip2 , zip , and xz for Compression

Compression is used to help save space on hard drives and speed traffic

through a network. In both cases, a minimized representation of the real

data is saved or sent and then converted back to real data for processing.

The gzip , bzip2 , zip , and xz utilities are installed by default on

most Linux versions, with gzip being the most popular compression tool

because it has been available the longest. The bzip2 tool provides even

better compression than gzip , but requires more memory to perform the

task. The xz program provides even better compression but is not as

widely used. The following display compression example uses gzip,

bzip2 , and xz . Note how the suffixes differ depending on the type of

compression:

Users can use the gunzip , bunzip , and unxz utilities to

uncompress their compressed files. The zip application provides the best

support to compress and uncompress to and from Microsoft Windows

systems. Use the - r flag with zip and follow it with the name of the file

to compress, as shown here to compress the d.txt file:

Use the unzip utility to uncompress the zip file back to the normal

state.

Using tar and cpio for Backup

The tar (tape archive) utility has been around for a very long time and is

a commonly used backup tool. The tar utility takes a list of specified

files and copies them into a single archive file (. tar). The . tar file can

then be compressed with the gzip utility on the Linux system, resulting

in a file with a .tar , .gz , or .tgz extension. This is called a

tarball .

The tar utility can be used to send backup jobs to a variety of backup

media, including tape drives and removable hard disk drives. The syntax for

using tar to create backups is as follows:

The -c option tells tar to create a new archive. The -v option tells

tar to work in verbose mode, displaying each file being backed up

onscreen. The -f option specifies the name of the tar archive to be

created.

For example, to create a backup of the /home directory and name it

backup.tar on an external USB hard drive mounted in / media/usb ,

enter the following tar command:

Notice in this example that the message tar: Removing leading

'/' from member names is displayed. When a tar archive is

created, absolute paths are converted to relative paths by default to simplify

restores (for example, restoring to a different location). As a result, the

leading / is removed.

NOTE The tar utility was created before subscripts became popular, so

when making a tarfile , the user must add .tar in order for the file

to be recognized as a tarfile .

Other tar options are shown in Table 8-1.

Table 8-1 The tar Command Options

To back up to a tape drive, replace the <filename> parameter with

the device name for the tape drive. On most distributions, the first SCSI or

SATA tape drive in the system is referenced as /dev/st0 (that’s the digit

zero, not an uppercase O). Therefore, enter tar -cvf /dev/st0

/home to run the same backup as in the previous example, but send it to a

tape drive instead.

To restore a tar archive, simply enter tar -xvf <filename> .

For example, to extract the archive created, enter tar -xvf

/media/usb/backup.tar . This will extract the archive into the

current working directory.

The cpio utility can also be used to make archive files like tar . For

example, to back up multiple files in the current directory, use the -o

option to write the data “out” to a file:

To restore files from a cpio archive, run cpio from the shell prompt

using the -i option to read files “in.” For example, to extract the archive

just created, enter the following:

Like tar , cpio does not compress the archive by default. Use zip ,

gzip , bzip2 , or xz to compress the archive after it has been created

with cpio .

NOTE The previous examples were done on a USB drive, but high-

security organizations typically prohibit USB drives because they make it

easier for an insider threat to exfiltrate confidential data.

Using dd for Disk Cloning

The dd command is a great command for copying files, the master boot

record (MBR), filesystems, and entire disk drives.

To copy a file with dd , use the syntax dd if=<input_file>

of=<output_file> . Here’s an example:

The dd command allows administrators to perform drive cloning. To

copy an entire partition or drive, enter dd if=<device_file> of=

<output_file> at the shell prompt. The device file of the partition is

used as the input file. All the contents of the partition are written to the

output file specified.

In the example that follows, the dd command is used to copy the entire

hard drive, /dev/sda , to an identical or larger hard drive:

The dd command can even create an image file of an entire hard disk.

Again, the syntax is dd if=<device_file> of=

<output_file> . The difference is that an administrator can simply

specify the device file of the hard disk itself instead of a partition. In the

next example, the entire /dev/sdb hard drive is archived into the

drivebackup file:

Another useful feature of dd is that it can create a backup copy of the

hard drive’s MBR and partition table. The syntax is as follows:

This tells dd to grab just the first 512-byte block of the hard drive, which

is where the MBR and partition table reside. This is shown in the following

example:

EXAM TIP The MBR is the first 512 bytes of the hard drive, which

bootstraps the GRUB bootloader, which in turn bootstraps the kernel. The

partition table, which defines the hard drive layout, is part of the MBR and

starts at byte 440. To back up the MBR without the partition table, run the

following command:

dd if=/dev/sda of=/dev/sdb bs=440 count=1

Exercise 8-1: Backing Up Data

In this exercise, practice data backups. Perform this exercise using the

virtual machine provided online.

VIDEO Please watch the Exercise 8-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 With the system up and running, open a terminal session.

 Change to the root user account by entering the su - command.

 Enter tar -cvf ./backup.tar /home at the shell prompt.

 Enter ls and then verify that the backup file exists.

 Change to the /tmp directory by entering cd /tmp at the shell prompt.

 Enter tar -xvf /root/backup.tar to extract the .tar file to

the current directory.

 Use the ls command to verify that the files from the tar archive were

extracted to the current directory.

 Enter exit to switch back to the standard user account.

Enabling Redundant Array of Independent Disks

Enabling redundant array of independent (or inexpensive) disks, commonly

called RAID, allows administrators to create filesystems over multiple hard

drives. For example, an administrator can combine five 10TB hard drives

and make them appear to users as a single 50TB hard drive. This is called

RAID 0 (zero) or striping . RAID 0 provides superior data

performance, as these drives can read and write striped data at the same

time. The best applications include streaming media. The downside is that if

a hard drive fails, the entire system fails and needs to be recovered from

backup archives. See Figure 8-2 for the RAID 0 setup.

Figure 8-2 RAID 0 setup vs. user perspective

Other RAID concepts provide superior reliability. RAID 1 (one), also

known as mirroring, offers the best in reliability because it clones devices.

On a hot-backup system, if a hard drive fails, it can be swapped with a good

hard drive while the system is operating, thus allowing systems to run 24/7.

The “insurance” is expensive because every hard drive requires a backup,

so five 10TB hard drives will have a duplicate of five 10TB hard drives.

See Figure 8-3 for the RAID 1 setup.

Figure 8-3 RAID 1 setup vs. user perspective

RAID 5 offers reliability at a much lower cost than RAID 1. Instead of

duplicating all the hard drives, RAID 5 adds a single hard drive that

mathematically calculates data records; this is known as parity .

When a drive dies on a hot-backup system, the administrator swaps it out

with a good hard drive, RAID 5 restores the data by reversing the parity

calculations, and the system continues to operate. Unlike RAID 1, if two

drives fail at the same time, the parity calculations fail and therefore need to

be recovered with backups from tapes or the cloud. See Figure 8-4 for the

RAID 5 setup.

Figure 8-4 RAID 5 setup vs. user perspective

RAID 6 improves reliability over RAID 5 by providing an additional

parity drive so that if two hard drives fail at the same time, the system can

quickly recover by swapping in two good hard drives. The downside of

RAID 5 and RAID 6 is performance. Performance is lost because the

systems must calculate parity. See Figure 8-5 for the RAID 6 setup.

Figure 8-5 RAID 6 setup vs. user perspective

RAID 1+0 (or RAID 10) provides administrators a balance between the

reliability of RAID 1 and the performance of RAID 0. Figure 8-6 displays

this setup, which combines the RAID 1 technique of mirroring each set of

data with the RAID 0 technique of striping the data. RAID 10 requires

much more hardware, but the uptime is tremendous.

Figure 8-6 RAID 10 setup vs. user perspective

Next, we look at the following RAID topics:

 Configuring software RAID

 Verifying RAID status

EXAM TIP Other RAID systems weigh differently on reliability and

performance, such as RAID 3 and RAID 4, but RAID 0, 1, 5, 6, and 10 are

the only versions mentioned on the CompTIA Linux+ exam.

Configuring Software RAID

Of course, there are hardware RAID solutions, but to create any RAID

system using the Linux Meta-device Administrator tool starts with selecting

the hard drives that will form the solution and then using the mdadm

command to create the RAID device, as shown here:

The preceding meta-device administration command uses -C to create

a new meta-device called /dev/md0 at a RAID 1 level, which is disk

mirroring. This system will use only two hard drives, /dev/sdb and

/dev/sdc , as defined by --raid-disks .

Once the RAID 1 meta-device is created, treat it like any other

filesystem. That is, create the filesystem and then mount it onto an empty

directory. To make the filesystem permanent at boot time, update the

/etc/fstab file:

Verifying RAID Status

To verify the status of the running RAID system, again use the mdadm

command. The mdmonitor service provides RAID monitoring and

management. To get details of the current setup, including the devices and

description of the array, use the --detail option with mdadm or view

the /proc/mdstat file:

The /etc/mdadm.conf configuration file created assembles RAID

arrays properly after reboots and simplifies the description of the devices

and arrays.

Use the mdadm command to manage hot spares; for example, mdadm

--fail marks the drive as faulty and prepares it for removal with the

mdadm --remove command. After the hard drive has been physically

removed and replaced, reenable it using mdadm --add . If the new

device is part of the failed array, it will be used as part of RAID; otherwise,

the drive will be seen as an available hot spare.

RAID Troubleshooting

Poorly performing RAID systems using SSD drives may need to be tuned

to run at normal performance. SSDs are used with RAID systems because

they perform so much better than IDE or SCSI drives.

The first step is to assure that the RAID system is composed entirely of

SSD drives. Use the lsscsi command to list SCSI devices, and assure

those drives are not part of the RAID system. Next, investigate if the RAID

system is using the SSD TRIM capabilities. To do this, run the fstrim

command using the -av options. The -a option trims all of the SSD

with TRIM features, and -v lists the output verbosely.

For RAID systems that are not failing over properly, assure that the

multipathd daemon is running properly. The multipathd daemon

checks for failed paths to enforce proper redundancy. For example, there

may be several failover disk drives connected via Fibre Channel. Review

and verify these drives by running fcstat .

Exercise 8-2: Configuring RAID and Logical Volumes

In this exercise, practice using RAID and LVM. In Part I you will create the

hard drives for the exercise. In Part II you will build your RAID and LVM

systems. Perform this exercise using the virtual machine provided online.

Part I: Create additional hard drives

To conduct this exercise, create four additional virtual hard drives within

the hypervisor. To do this with VirtualBox, shut down the virtual Linux

system, click Details in the upper right, and then click Storage (about

halfway down in the Oracle VM VirtualBox Manager). See the following

illustration.

Click Controller: SCSI and then click the square icon just to the right

with the green plus sign, as shown here.

In the VirtualBox Question dialog box that appears, choose Create New

Disk, as shown next.

The next window asks you which type of file you’d like to use for the

new virtual hard disk. Choose VDI (VirtualBox Disk Image), as shown

next, and then choose Dynamically Allocated in the next window.

Change the name of the hard drive. For example, in the following

illustration, I named the first hard drive NewVirtualDisk10. The next hard

drive I create will be named NewVirtualDisk11, and so on, up to 13. Set the

size of the virtual hard disk to 256.0MB and click Create.

Repeat the steps to create a new disk until you have a total of four

additional 256MB virtual hard drives. Click OK in the Storage Settings to

finalize creation of the hard drive. The following illustration displays the

final results; you should see your new hard drive added to the virtual

machine. Power on the system to complete the next lab.

If you get an error during this process, it likely has to do with a naming

conflict. Make sure the new hard drive name is different from earlier names.

Remember to take a snapshot of the virtual machine before starting the lab.

VIDEO Please watch the Exercise 8-2 video for a demonstration on how

to perform this task.

Part II: Configure RAID and LVM systems

Once you have your four additional virtual hard drives using the virtual

machine provided online, complete the following steps to practice using

RAID and LVM:

 With the system up and running, open a terminal session.

 Change to the root user account by entering the su - command.

 Convert two of the hard drives into physical volumes for LVM by running

the following command:

pvcreate /dev/sda10 ; pvcreate /dev/sda11 ;

pvdisplay; pvs

 Create the volume group called labvg using the default extent size:

vgcreate labvg /dev/sda10 /dev/sda11 ; vgdisplay;

vgs

 Create a 200MB logical volume called lablvm from the new volume

group:

lvcreate -L 200M -n lablvm ; lvdisplay; lvs

 Create the filesystem and mount it onto a new empty directory. Display the

new logical volume settings using lvs and lvdisplay :

 Observe how much disk space is available using the df -h command and

resize the logical volume to 300MB:

 There is still not enough space. Add another 100MB:

 Create a RAID 1 mirror using mdadm :

 Create a filesystem on the RAID device and mount the filesystem:

 Save the meta-device settings into /etc/mdadm.conf to be observed at

boot time and then review the status of the RAID device:

 To mount the new LVM and RAID devices at boot time, add the following

entries to /etc/fstab :

 Enter exit to switch back to the standard user account.

Chapter Review

Logical volume management provides a solution to easily grow a filesystem

while in use, and it eases archiving because of its snapshot capability.

Physical volumes such as partitions are pooled together into volume groups.

This data pool, or “volume group,” can be divided into logical volumes.

The logical volumes are formatted into filesystems. Instead of mounting

partitions, logical volumes are mounted onto directories in the filesystem.

Administrators must conduct backups on a regular schedule. This

requires selecting a backup medium and backup strategy and then

implementing the strategy with backup and compression utilities.

Software RAID systems are a feature of logical volume management.

RAID systems can be designed for performance (for example, RAID 0) or

for data reliability (for example, RAID 1). To balance cost, reliability, and

performance, implement RAID 5 or RAID 6. For the best in reliability and

performance, implement RAID 10.

Here are some key facts to remember about volume management:

 LVM enables administrators to dynamically add space to the system.

 To create LVM storage, use the following process:

 Create physical volumes with the pvcreate command.

 Create a volume group using the vgcreate command.

 Create logical volumes using the lvcreate command.

 Use the lsof command at the shell prompt to display a list of open files.

 Backup medium choices include tape drives, removable hard drives, and/or

the cloud.

 Administrators must select a backup strategy, such as full, incremental, or

differential backups. Administrators combine them to design a backup

strategy.

 Full backups back up everything and flag the files as having been backed

up.

 Incremental backups back up everything that has been modified since the

last full or incremental backup and flag the files as having been backed up.

 Differential backups back up everything that has been backed up since the

last full backup. However, they don’t flag the files as having been backed

up.

 Commonly backed-up filesystems include /etc , /home , /root , and

/var .

 The tar and cpio utilities work with most backup media.

 The dd utility can copy an entire partition or even clone an entire hard

drive.

 RAID 0, also known as striping, is designed for performance and not

reliability.

 RAID 1 is known as mirroring and is designed for reliability.

 RAID 5 offers reliability by maintaining a single-parity drive.

 RAID 6 offers reliability by maintaining a dual-parity drive system.

 Use the mdadm command to configure, maintain, and monitor RAID. Use

the --fail , --remove , and --add options to mark devices as

faulty, removed, or added, respectively.

Questions

 Which type of backup backs up all files modified since the last full backup

and does not flag the files as having been backed up?

 Full

Incremental

 Differential

 Partial

 A system administrator creates a backup of /etc to a removable hard disk

drive mounted at /mnt/USB . Which tar command will do this?

 tar -cvf /mnt/USB/backup.tar /etc

tar -xvf ~/backup.tar /etc

 tar -xzf /mnt/USB/backup.tar /etc

 tar -cvf /mnt/USB/backup.tar ~/etc

 Which command will create a compressed cpio archive of all the files in

the Projects directory within the user’s home directory to

/mnt/usbdrive/Projectsbackup.cpio.gz ?

 cpio -ov ~/Projects | gzip >

/mnt/usbdrive/Projectsbackup.cpio.gz

ls ~/Projects | cpio -ovz | >

/mnt/usbdrive/Projectsbackup.cpio.gz

 ls ~/Projects | cpio -ov | gzip >

/mnt/usbdrive/Projectsbackup.cpio.gz

 cpio -ovz ~/Projects >

/mnt/usbdrive/Projectsbackup.cpio.gz

 Which command can be used to create an image of the /dev/sda2

partition in the /mnt/usb/volback file?

 dd if=/dev/sda2 of=/mnt/usb/volback

cp /dev/sda2 /mnt/usb/volback

 dd if=/mnt/usb/volback of=/dev/sda2

 dd if=/dev/sda of=/mnt/usb/volback

 Create a new GPT partition on the /dev/sdc hard disk drive. After

running gdisk /dev/sdc at the shell prompt, which subcommand will

create a new partition that is 100GB in size?

 n

p

 new -size=100G

 t

 After adding a third 1TB solid state drive (SSD) to a Linux server, it needs

to be added as storage space to an LVM volume group named DATA on the

system. Which command should be entered first to do this?

 vgextend DATA /dev/sdc

pvscan /dev/sdc DATA

 pvcreate /dev/sdc

 lvextend -L 1T -n DATA

 Fill in the blank with the option to create a snapshot. (Choose two.)

lvcreate -L 1G ____ -n snapshot DATA

 --clone

-s

 --snapshot

 --snap

 Which RAID system has two additional hard drives for parity?

 RAID 0

RAID 1

 RAID 5

 RAID 6

 Which commands will extend a logical volume filesystem from 500MB to

1000MB? (Choose two.)

 lvextend -L +500 /dev/lvm1

lvextend -L +500M /dev/lvm1

 lvextend -L 1000 /dev/lvm1

 lvextend -L 1000M /dev/lvm1

 Which command will compress files by default?

 tar

cpio

 dd

 xz

 Which command is run to verify RAID status?

 mdadm --detail /dev/md0

lvdisplay

 lvs

 mkfs.ext4 /dev/md0

 Place the steps in the proper order to grow a filesystem.

 resize2fs

pvcreate

 lvextend

 vgextend

Answers

 C. A differential backup backs up all files modified since the last full

backup and does not flag the files as having been backed up.

 A. The tar -cvf /mnt/USB/backup.tar /etc command uses

the correct syntax.

 C. The ls ~/Projects | cpio -ov | gzip >

/mnt/usbdrive/Projectsbackup.cpio.gz command will

generate a listing of files in the Projects directory, send the list to the

cpio command to create an archive, and send the archive to gzip for

compression.

 A. The dd if=/dev/sda2 of=/mnt/usb/volback command

creates an image of the /dev/sda2 partition in the

/mnt/usb/volback file.

 A. Within gdisk , type n to create a new partition. After doing so, the

user is prompted to specify its size.

 C. Before allocating space from a storage device to a volume group, first

define it as an LVM physical volume. In this scenario, use the pvcreate

/dev/sdc command.

 B, C. The -s and --snapshot options create a snapshot with the

lvcreate command.

 D. RAID 6 has two additional hard drives for parity. (RAID 0 provides

striping. RAID 1 provides mirroring. RAID 5 uses a single drive for parity.)

 B, D. Both lvextend -L +500M /dev/lvm1 and lvextend -L

1000M /dev/lvm1 will extend a logical volume filesystem from

500MB to 1000MB.

 D. The xz command compresses files by default. The other options only

archive data by default.

 A. The mdadm command displays the status of the RAID array. The

lvdisplay and lvs commands display logical volume details. The

mkfs.ext4 command creates an ext4 filesystem.

 B, D, C, A. The correct order of the steps is pvcreate , vgextend ,

lvextend , resize2fs .

CHAPTER 9
Managing Linux Processes

In this chapter, you will learn about

 Understanding Linux processes

 Managing processes

 Scheduling jobs

When I corrected his mistake and ran the code again, he didn’t laugh

anymore.

—Christine Darden, NASA

In this chapter, you will learn how the Linux operating system handles

executable programs and running scripts. Also, you will discover how to

manage executables while they run on the system.

EXAM TIP Be very familiar with how Linux handles running processes.

Know how to use shell commands to view running processes and how to

run processes in the foreground and background. Also, understand how to

kill a process from the command line and automate jobs using the at and

cron utilities.

Understanding Linux Processes

The key to being able to effectively manage Linux processes is to first

understand how processes function within the operating system. So, what

exactly is a process? For our purposes, a process is a program that has been

loaded from a storage drive into system RAM and is currently being

processed by the CPU on the motherboard. This section covers the

following topics:

 Types of Linux programs

 User processes versus system processes

 How Linux processes are loaded

Types of Linux Programs

Many different types of programs can be executed to create a process. On

the Linux system, the types of programs listed in Table 9-1 can be loaded

into RAM and executed by the CPU.

Table 9-1 Linux Programs That Can Create Processes

Remember that the Linux operating system can run many processes

“concurrently” on a single CPU. Depending on how the Linux system is

being used, it may have only a few processes or hundreds of processes

running concurrently. The term concurrently is qualified in quotes because

single-core CPUs cannot run multiple processes at the same time. Instead,

Linux quickly switches between various processes running on the CPU,

making it appear as if multiple processes run concurrently. However, the

CPU actually only executes a single process at a time. All other processes

currently “running” wait in the background for their turn. Linux maintains a

schedule that determines when each process is allowed access to the CPU,

called multitasking.

For true concurrency, consider either a multicore or hyperthreading

CPU. Multicore CPUs can actually execute more than one process at a time

because each core in the processor package is a separate CPU.

Hyperthreading CPUs are designed such that a single processor can run

more than one process at a time.

User Processes Versus System Processes

The Linux operating system uses several types of processes. Some

processes are created by the end user when they execute a command from

the shell prompt or through the graphical interface. These processes are

called user processes. User processes are usually associated with some kind

of end-user program running on the system.

To view processes, simply run the ps (process status) command, as

shown here:

The ps command lists process IDs (PID column), the terminal they

are running within (TTY), how long each process has been running in CPU

time (TIME), and the process command (CMD). In this example, you see

one process: the ps user process, which is process ID 28041 , running in

pseudo-terminal 0 , and it ran very quickly in system time at 00:00:00 .

The key point to remember about user processes is that they are called

from within a shell and are associated with that shell session.

However, not all processes running on the system are user processes. In

fact, most processes executing on a given Linux system will probably be of

a different type, called system processes or daemons. Unlike a user process,

a system process (usually) does not provide an application or an interface

for an end user to use. Instead, a system process is used to provide a system

service, such as a web server, an FTP server, a file service such as Samba, a

print service such as CUPS, or a logging service. Such processes run in the

background and usually don’t provide any kind of user interface.

For example, consider the processes shown in Figure 9-1 after executing

the ps -e command. The figure shows only a few lines of the output, but

the -e option displays every process running on the system, not only your

processes.

Figure 9-1 System processes

NOTE Most system processes are noted with a letter d at the end of the

name, which stands for daemon. The system has many system processes

running, and these are loaded after the kernel is booted so they are not

associated with a shell. User processes are tied to the shell instance they

were called from.

By default, most Linux distributions boot with many daemons

configured to automatically start at boot. Some of these daemons are critical

to the overall function of the system.

When implementing a new Linux system, whether as a server or as a

workstation, it is wise to turn off all the daemons that are not needed.

Running unnecessary daemons consumes system resources, such as

memory and CPU time. More seriously, unnecessary daemons can also

open up gaping security holes. Be aware of which system services are

running. If the service is needed, keep it. If not, get rid of it!

How Linux Processes Are Loaded

All Linux processes are loaded by one single process—either the legacy

SysVinit (init) or the newer systemd , depending on the

distribution—that is started by the Linux kernel when the system boots.

Understand that any process running on a Linux system can launch

additional processes. The process that launched the new process is called

the parent process. The new process itself is called the child process. (For

purposes of this discussion, systemd also means init .) This

parent/child relationship constitutes the heredity of Linux processes, as

shown in Figure 9-2.

Figure 9-2 Generations of processes

In Figure 9-2, the grandparent process spawned three child processes.

Each of these three child processes then spawned child processes of their

own.

For any process on a Linux system, you need to be able to uniquely

identify it as well as its heredity. Whenever a process is created on a Linux

system, it is assigned two resources:

 Process ID (PID) number This is a number assigned to each process that

uniquely identifies it on the system.

 Parent process ID (PPID) number This is the PID of the process’s

parent process (that is, the process that spawned it).

By assigning these two numbers to each process, you can track the

heredity of any process through the system. The Linux kernel uses the

process table to keep track of the processes running on the system. The

process table is maintained in memory by the operating system to facilitate

switching between processes, scheduling processes, and prioritizing

processes. Each entry in the table contains information about one specific

running process, such as the process name, the state of the process, the

priority of the process, and the memory addresses used by the process.

NOTE Older distributions still use SysVinit or init . Modern

Linux releases have migrated to systemd , which is the recommended

choice today for security and performance.

The kernel loads the systemd process automatically during bootup.

The systemd process then launches child processes, such as a login

shell, that in turn launch other processes, such as that used by the vi

utility, as shown in Figure 9-3.

Figure 9-3 The systemd process as the grandparent of all other

processes

New processes are assigned the next highest available PID numbers,

and systemd is always assigned a PID of 1 . This brings up an

interesting point. If systemd is the first process from which all other

processes descend, what then is its PPID ? Does it even have one?

Actually, it does. Because the systemd process is launched directly by

the Linux kernel (which always has a PID of 0), the PPID of the

systemd process is always 0 . This is shown in Figure 9-4.

Figure 9-4 The PPID of the systemd process

The systemd process is responsible for launching all system

processes that are configured to automatically start on bootup. It also

creates a login shell that is used for login.

This brings up an important point. Notice back in Figure 9-3 a second

Bash shell beneath the login shell. One might ask, “Couldn’t I just run vi

from within the login shell? Do I have to launch a second Bash shell?”

Actually, in this figure, vi was launched from the login shell. Why, then,

does the figure show a second shell between the vi process and the login

shell? Because any time a user runs a command from within any shell, a

subshell is created that the process runs within. The subshell is a separate

process in and of itself and has its own PID assigned. The PPID of the

subshell is the PID of the shell where the command was entered.

Figure 9-5 Running a process from the shell prompt

The subshell process remains active for as long as the command is in

use. The process for the command runs within the subshell and is assigned

its own PID . The PPID of the command’s process is, of course, the

PID of the subshell it is running within. When the command process is

complete and has exited, the subshell is terminated and control is returned

to the original shell session. This process of creating a new subshell and

running the command process within it is called forking.

For example, in Figure 9-5, the user has issued the vi command at the

shell prompt of a Bash shell. A new subshell is created and the vi process

is run within it. When the user exits vi , the subshell is destroyed and

control is returned to the original shell instance.

Managing Processes

Managing running processes is one of the key tasks performed on Linux

systems. This section covers the following topics:

 Starting system processes

 Viewing running processes

 Prioritizing processes

 Managing foreground and background processes

 Ending a running process

 Keeping a process running after logout

Starting System Processes

There are two basic ways to start a process on a Linux system. For a user

process, simply enter the command or script name at the shell prompt. For

example, to run the vi program, simply enter vi at the shell prompt.

When done, the vi process is created, as shown here:

For system processes, however, use either an init script or a service

file, depending on whether the distribution uses init or systemd .

System services manage processes that start the web server (HTTPD), File

Transfer Protocol (FTP) server, Secure Shell (SSH) server, Domain Name

System (DNS) server, and so on.

These scripts are stored in a specific directory, and the location depends

on the Linux distribution (the details of which are discussed in Chapter 11).

For example, for an init -based system, the actual scripts reside in the

/etc/init.d/ directory. Whenever a service is installed on a system, a

corresponding init script is automatically installed into the directory.

Once there, an administrator can execute any script by simply running it

from the command prompt. The syntax is as follows:

/etc/init.d/<script_name> start | stop | restart

For example, to enable file and print services with Microsoft Windows

systems, start Samba by entering /etc/init.d/smb start at the

shell prompt. To stop it, enter /etc/init.d/smb stop . To restart it,

enter /etc/init.d/smb restart .

If the Linux distribution uses systemd instead of init , then the

system services are managed using service files, which have a .service

extension. Use the systemctl command at the shell prompt to start,

stop, restart, or check the status of services on the system:

 To start a service, enter systemctl start <service_name>

 To stop a service, enter systemctl stop <service_name>

 To restart a service, enter systemctl restart <service_name>

 To view the status of a service, enter systemctl status

<service_name>

For example, to enable the sshd daemon on a distribution that uses

systemd , enter systemctl start sshd at the shell prompt.

Linux administrators must become more familiar with systemd and

the systemctl commands. The systemd utility is superior to

SysVinit or init because it efficiently handles dependencies and

performs parallel booting, thus getting systems up and running significantly

faster.

EXAM TIP It is important to know a few systemd commands like

systemctl and their subcommands for the exam.

Viewing Running Processes

This section covers how to view running processes on the system and

details the following tools:

 Using top and htop

 Using ps

 Using pgrep and pidof

Using top and htop

Linux provides a wide variety of tools to view running processes on the

system. Two popular utilities include the top and htop programs.

These list processes, and update process status every three seconds, ranking

by CPU utilization. Run top by simply entering top at the shell prompt.

When done, the interface shown in Figure 9-6 is displayed.

Figure 9-6 Using top to view running processes

In Figure 9-6, notice that top displays some of the running processes,

one on each line. The top report is helpful for detecting high CPU

utilization and high run queues. The following columns are used to display

information about each process:

 PID The process ID of the process.

 USER The name of the user who owns the process.

 PR The priority assigned to the process.

 NI The nice value of the process (nice is discussed later in the

chapter).

 VIRT The amount of virtual memory used by the process.

 RES The amount of physical RAM the process is using (its resident size)

in kilobytes.

 SHR The amount of shared memory used by the process.

 S The status of the process. Possible values include the following:

 D Uninterruptible sleep

 R Running

 S Sleeping

 T Traced or stopped

 Z Zombie

NOTE A zombie process has completed execution, but after its parent has

died, thus being unable to cleanly exit. The zombie eventually clears up on

its own, as systemd becomes the new parent. If that fails, you can

attempt to kill the zombie or wait until the next scheduled reboot. The name

sounds scary, but zombies are harmless to the system, only tying up a

process slot.

 %CPU The percentage of CPU time used by the process.

 %MEM The percentage of available physical RAM used by the process.

 TIME+ The total amount of CPU time the process has consumed since

being started.

 COMMAND The name of the command that was entered to start the

process.

You can sort top and htop output not only by the default CPU

utilization, but also by memory utilization (by pressing the M key), by

PID (by pressing the N key), or back to %CPU (by pressing the P key).

Also, to see more processes, press the Up Arrow and Down Arrow

keys to scroll through the many processes. The Left Arrow and

Right Arrow keys display more details about the running processes,

such as their full path.

The htop command has additional features such as color coding,

mouse scrolling to maneuver through process output, and function keys that

provide help, search, and other sorting features. Figure 9-7 shows a sample

of htop output.

Figure 9-7 Using htop to view running processes

Pressing the ? key while top or htop is running displays the help

screen, which outputs the keystrokes required to sort by a particular

category. The top help screen is shown in Figure 9-8. To learn more

about top and htop , review their man pages.

Figure 9-8 Viewing the top help screen

Using ps

The ps utility displays running processes on the system. Unlike top ,

which displays processes dynamically, ps displays a snapshot of the

current processes running.

Entering ps displays the processes associated with the current shell, as

shown here:

In this example, the following processes are displayed by ps :

 bash The current Bash shell session.

 ps Because ps is in use to list current processes, its process is also

listed.

Notice that the following information is displayed by default:

 PID The process ID of the process

 TTY The name of the terminal session (shell) that the process is running

within

 TIME The amount of CPU time used by the process

 CMD The name of the command that was entered to create the process

To see all processes running on the system, use the -e option with ps .

Here is an example:

As shown in this example, the -e option results in many more

processes being displayed by the ps command. Also notice that most of

the processes shown have a question mark (?) in the TTY column. This

indicates the process is a system process. Remember that system processes

(daemons) are loaded by the systemd process at startup and therefore are

not associated with any shell. Because of this, a ? is displayed in the TTY

column in the output of ps .

The ps command has other options displayed within the ps(1) man

page. For example, the -f option will provide “full” detail. Combined

with -e , as shown here, it will result in a “full” listing of every process

running on the system:

The -f option displays additional information, including the following:

 UID The user ID of the process’s owner

 PPID The PID of the process’s parent process

 C The amount of processor time utilized by the process

 STIME The time that the process started

For further detail, use the -l option with the ps command. The -l

option displays the long format of the ps output. Here is an example

combined with -e and -f :

Images

With the -l option, the user can view the following information about

processes running on the system:

 F The flags associated with the process. This column uses the following

codes:

 1 Forked, but didn’t execute

 4 Used root privileges

 S The state of the process. This column uses the following codes:

 D Uninterruptible sleep

 R Running

 S Interruptible sleep

 T Stopped or traced

 Z Zombie

 PRI The priority of the process.

 NI The nice value of the process.

 ADDR The memory address of the process.

 SZ The size of the process.

 WCHAN The name of the kernel function in which the process is sleeping.

A dash (–) in this column means the process is currently running.

EXAM TIP Knowledge of various column outputs for ps is not critical

for the CompTIA Linux+ exam. For example, you don’t need to know that

-l will list process states and -f will not. Just know that ps lists

PID s and process names, and -e lists every process.

The ps command has two flavors: System V and BSD . We have

demonstrated System V examples. BSD examples do not use a leading

dash (-). For example, to list all processes in BSD style, use the

command ps aux instead of ps -elf . Running ps aux displays

additional details such as %CPU and %MEM utilization, which is helpful

for performance tuning and troubleshooting, as shown in this snippet:

Images

Now let’s explore how to find the process ID if we know the process

name.

Using pgrep and pidof

The ps command is very useful for viewing process information.

However, sometimes the output of ps can be overwhelming, especially

when just looking for a specific process. For example, to view just the

bash processes running, run the following:

Another option to do the same is to use either the pgrep command or

pidof command. As its name implies, pgrep combines the

functionality of ps and grep into a single utility. When you run

pgrep or pidof , you specify certain selection criteria to view. Then the

command searches through all the currently running processes and outputs

a list of process IDs that match the criteria specified, as shown here:

Images

Use the following options with pgrep to display more details of

processes:

 -l Lists the process name and process ID

 -u <user_name> Matches on the specified process owner

The pgrep command lists only the PID of the matching processes by

default. To view the name of the process as well as its PID , use the -l

option. For example, to view a list of all processes owned by the cgreer

user, use the following command:

Images

Now that you have learned how to view which processes are running on

a system with top/htop , ps , and pgrep/pidof , next you’ll learn

how to prioritize processes to help improve system performance.

Prioritizing Processes

Recall from the first part of this chapter that Linux is a multitasking

operating system. It rotates CPU time between each process running on the

system, creating the illusion that all of the processes are running

concurrently.

To improve Linux system performance, you can specify a priority level

for each process. Doing so determines how much CPU time a given process

gets in relation to other processes on the system.

By default, Linux tries to equalize the amount of CPU time given to all

processes on the system. However, sometimes you may want to adjust the

priority assigned to a process. Depending on how the system is deployed, a

particular process may be set to have a higher priority than other processes.

This can be done using several Linux utilities. In this section, we review the

following topics:

 Setting priorities with nice

 Changing priorities with renice

Setting Priorities with nice

The nice utility can be used on Linux to launch a program with a

different priority level. Recall from our previous discussion of top and

ps that each process running on the system has a PR value and NI

value associated with it, as shown in Figure 9-9.

Images

Figure 9-9 Viewing PR and NI values

The PR value is the process’s kernel priority. The higher the number,

the lower the priority of the process. The lower the number, the higher the

priority of the process. The NI value is the nice value of the process,

from the adage “nice guys finish last.” The nice value is factored into the

kernel calculations that determine the priority of the process. The nice

value for any Linux process ranges between –20 and +19 . The lower the

nice value, the higher the priority of the process.

You cannot directly manipulate the priority of a process, but you can

manipulate the process’s nice value. The easiest way to do this is to set

the nice value when starting the command using the nice command.

Any time a program starts, the default “niceness” is 0 (zero). But the

default for starting a program with nice is 10 . To set higher priorities

(that is, negative niceness), you must be root . The syntax is nice -n

<nice_level> <command> .

The following example shows launching various subshells with different

priorities using nice :

Images

The ps -o option allows us to list the columns to view from ps .

Notice that PID 8389 runs at the default nice value of 10 , and PID

8470 runs at 19 .

The nice command works great for modifying the nice value when

running a command to start a process. But to change the nice value of a

running command, you will use the renice command.

Changing Priorities with renice

Instead of having to kill a process and restart it with nice to set its

nice value, use the renice command to adjust the nice value of a

process that is currently running on the system. The syntax for using this

command is renice <nice_value> <PID> .

For example, in the example in the previous section, the PID of a

bash process is 8389 with a nice value of 10 . To adjust the priority

of the bash process to a lower level without unloading the program, enter

renice 15 8389 at the shell prompt, as shown in this example:

Images

As this example shows, the nice value of the PID 8389 process

was increased from 10 to 15 . This caused the overall priority of the

process to go from 9 to 4 , thus decreasing the process’s overall priority

level.

Only root can decrease nice values (that is, raise priority) with

renice . For example, if you attempt to return the niceness of PID

8470 back to 10 , you will not be allowed. But when you run with

root privileges using sudo you then will be allowed, as shown here:

Images

Troubleshooting CPU Priorities with nice and renice

On a multiuser system, you may have one user that has a job that slows

down the Linux system for all the other users because the user’s job uses

significant resources. Ask the user to start the job using the nice

command to lower the priority. By default the niceness is set to 10 .

Over time you may find that the priority needs to be even lower. Use

renice to adjust the job’s nice value to 15 . It will take a little longer

for the user to get their results, but you will have fewer complaining users

because now they all can get their work done.

Let’s now shift gears and talk about foreground and background

processes.

EXAM TIP Make sure to understand nice and renice basics, such

as how to use them, their defaults, and minimum and maximum settings.

Managing Foreground and Background Processes

In this section, we discuss running processes in the foreground and

background. We’ll address the following topics:

 Running processes in the background

 Switching processes between background and foreground

Running Processes in the Background

Recall from our earlier discussion of processes that when entering any

command at the shell prompt, a subshell is created, and the process runs

within it. As soon as the process exits, the subshell is destroyed. While the

process is running, the $ shell prompt is unavailable, so the user is unable

to run another command until the current process completes. For example,

the sleep command simply “sleeps” in the foreground for several

seconds. Here’s an example:

Images

Programs by default run in the foreground, whether they are text-based

shell programs or graphical programs. However, it is possible to run a

program in the background. These programs launch normally, but control is

immediately returned to the shell. Then you can use the shell to launch

other programs.

To run a program in the background, simply append an ampersand (&)

character to the command. This tells the shell to run the program in the

background. So, let’s use sleep again, but for a much longer period this

time. The following command will still run, but the end user is allowed to

continue working:

Images

Notice that two values are displayed on the screen after the process was

run in the background. The first value, [1] , is the job ID (JID) assigned to

the background job, and the second value, 9148 , is the process ID (PID)

of the process. The JID is unique to the shell it runs in; the PID is unique

to the computer. To view all background jobs running on the system, enter

jobs at the shell prompt:

Images

In this example, the output of the jobs command displays the status of

the job as well as the name of the command that created the background

job. To see the process ID, use the ps command:

Images

Switching Processes Between Background and Foreground

Just because a process was started in the background does not mean it has

to stay there. To switch processes between foreground and background, use

the following commands:

 fg Moves a background process to the foreground

 bg Moves a foreground process to the background

To use the bg utility, first put the foreground job to sleep by pressing

CTRL-Z. This pauses the process and then assigns a job ID to it. Next, enter

bg to move the process to the background, where it will continue running

from where it left off.

In the following example, the sleep program is loaded into the

foreground and then stopped by using CTRL-Z, where it is assigned a job ID

of 1 . It is then sent to the background using the bg command. Finally,

the job is returned to the foreground with the fg command.

Images

The bg and fg commands are shell commands; to learn more about

these, read the bash(1) man page.

NOTE Ctrl-z is often shown as ^Z . Control characters are not case

sensitive, unlike most every other commands in Linux. There are other

control characters; for example, ^C will “cancel” a job, causing it to stop

and quit, and ^D means “done” or “end of input,” to notify Linux that

there is no further input.

Ending a Running Process

Up to now we have run, viewed, prioritized, and moved processes from

background to foreground. The final topic we need to cover is how to end a

process that is running on the system.

Normally, entering CTRL-C ends a running process. But if the job is

running in the background, CTRL-C will not work. Also, processes

sometimes hang and become difficult to close properly. In this section, we

discuss how to kill such processes in the following ways:

 Using kill and killall

 Using pkill

Using kill and killall

The kill command is used to terminate a process using the process ID or

job ID. The syntax for using kill is kill -<signal> <PID> or

kill -<signal> %<JID> . The command kill is a misnomer

because end users can also pause and resume jobs using kill by sending

a specific kill signal to the process. There are 64 kill signals an end user can

send to a process, but the CompTIA Linux+ exam focuses only on the

following ones:

 SIGHUP This is kill signal 1. This signal restarts the process while

keeping the same PID . This is useful for restarting a website after making

changes to a configuration file.

 SIGINT This is kill signal 2. This signal sends a CTRL-C key sequence

to the process.

 SIGKILL This is kill signal 9. This is a brute-force kill and

should be used only as a last resort. If the process is hung badly, this option

forces it to stop, but its child processes orphan and become zombies

because the parent process isn’t there to clean them up. If these are not

removed, you can wait until the next scheduled reboot. Avoid using

SIGKILL on databases, mail servers, and print servers because this could

corrupt them.

 SIGTERM This is kill signal 15 , and the default signal. This signal

tells the process to terminate gracefully, gently killing the child processes,

and then the parent.

When using kill , you can use the signal name, such as SIGTERM ,

or the signal value, such as 15 . You can use ps to first identify the PID

of the process before using kill to stop it. Here, the sleep process is

running with a PID of 8312 :

Images

Also, any of the following could be used to kill , or specifically

terminate, our sleep process:

 kill 8312

 kill -15 8312

 kill -TERM 8312

 kill -s TERM 8312

 kill -s 15 8312

 kill -s SIGTERM 8312

The CompTIA Linux+ exam may show any of these forms, so they are

listed here for your preparation. Again, using SIGKILL will work, but it

is best to try gentler signals first. Only if these signals fail should you use

the harsher SIGKILL signal. When experiencing a hung process that

needs to be killed, use the following sequence:

 Send a SIGTERM . Usually, this will fix the problem and allow the process

to exit cleanly. If it doesn’t, then go on to step 2.

 Send a SIGKILL .

In addition to kill , you can also use killall to kill processes by

name, which is more convenient than running ps or pgrep to determine

the PID first and then running the kill command.

The killall command syntax is similar to the kill command

syntax. For example, to kill the sleep process in the preceding example

with killall instead of kill , simply run killall -15 sleep .

This command sends the SIGTERM signal to the process named sleep .

Again, -15 is the default kill signal for killall , so killall

sleep would also work.

NOTE If the end user is running multiple sleep processes, the

killall command will terminate all of them.

To learn more about kill(1) and killall(1) , review the

kill(1) and killall(1) man pages. These tools are very useful,

such as using the -u option with killall to end processes owned by a

specific user.

EXAM TIP If you use the dd command, sending kill signal SIGUSR1

reports the dd progress status. Simply run killall -10 dd while

dd is running and the user will be informed of how much data dd has

transferred.

Using pkill

Like killall , the pkill command can also stop a running process by

name. The pkill command is a cousin of the pgrep command

reviewed earlier. In fact, they use exactly the same options and even share

the same man page!

Again like killall , pkill will kill all processes that match the

argument name. For example, to kill all running processes named sleep

with the SIGTERM signal, execute pkill -SIGTERM sleep at the

shell prompt. Again, since SIGTERM is the default, pkill sleep

terminates the process in the same manner.

EXAM TIP For the Linux+ exam, make sure to know that the top

utility may also be used to kill processes using the k key!

Keeping a Process Running After Logout

The last topic to address regarding process management is how to keep a

process running after logging out from the system. As discussed, signals are

sent to running processes to indicate that a system event has occurred and

that the process needs to respond.

A commonly used signal is the hang-up signal, SIGHUP . When a user

logs out of a terminal session, Linux sends a SIGHUP signal to all the

programs associated with that terminal.

However, a process can also be told to ignore SIGHUP signals, which

allows it to remain running even after the end user logs out! This is done by

using the nohup utility to run the program. This causes the process

created by the command to ignore all SIGHUP signals.

For example, suppose you are about to leave the office for the day and

start a shell script called updatemydb , which runs for six hours. If you

leave for home without logging out, an attacker could compromise your

account; but, if you log out, updatemydb gets killed. What is the

solution?

To allow the script to run and have the security of logging out, you can

start the script with the nohup command. Just enter nohup

updatemydb & at the shell prompt and then log out. If the command

generates output that is usually sent to the stdout, nohup will redirect the

output to the ~/nohup.out file.

It is important to note that a command run under nohup is only

immune to SIGHUP signals. All other kill signals still work. For example,

terminating the program using the SIGTERM signal using the kill

command will be successful.

You can practice working with Linux processes in Exercise 9-1.

Exercise 9-1: Working with Linux Processes

In this exercise, practice using shell commands to manage processes

running on the system. Perform this exercise using the virtual machine

provided online.

Images

VIDEO Please watch the Exercise 9-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot the Linux system and log in as a standard user.

 Open a terminal session.

 Switch to the root user account by entering su - and provide the

password.

 Practice starting system processes by doing the following:

At the shell prompt, enter the systemctl status atd command.

What’s the status of the at daemon? (For most distributions, the atd

daemon is not configured to run by default.)

 Start the atd daemon by entering systemctl start atd at the

shell prompt.

Enter systemctl status atd again at the shell prompt. The atd

service should now be shown as running.

 Practice using the top utility by following these steps:

Enter top at the shell prompt.

 View the running processes.

Press h to access the top help screen. Which keystroke will sort the

display by CPU stats?

 Press p to sort the display by CPU stats. Which processes are using the

most CPU time on the system?

Press m to sort the display by memory usage. Which processes are using

the most memory?

Add columns by pressing f .

Add the PPID column to the display by pressing b and then the

Spacebar . Note that the PPID of each process is added to the display.

 Exit top by pressing q .

 Practice using the ps utility to view processes by doing the following

procedure:

Enter ps at the shell prompt. What processes are associated with the

current shell session?

 View all running processes on the system by entering ps -ef | more

at the shell prompt.

Press the Spacebar until the atd service comes into view. What

username does atd run under? (On most distributions, it should run under

the at user.)

 Enter ps -el | less at the shell prompt.

Locate the Status (S) column.

Press the Spacebar and look for the atd service. What is the status of

the service? (Because it isn’t being used at the moment, it’s probably

sleeping.)

 Practice managing process priorities by completing the following steps:

Enter top at the shell prompt.

 What are the priority (PR) and nice (NI) values associated with the top

process? (For most distributions, these values should be 16 and 0 ,

respectively.)

Press q to stop the top process.

 Enter nice -n -20 top at the shell prompt. Now what are the PR

and NI values for the top process?

Note the PID for the top process.

Open a new terminal window and use su to switch to the root user.

Adjust the nice value of the top process while it’s running by entering

renice 1 <top_PID> at the shell prompt.

 Switch back to the first terminal session where top is running. What are

its PR and NI values now?

Press q to exit top .

 Practice switching processes between the foreground and the background

by performing the following procedure:

Load top again by entering top at the shell prompt.

 In the terminal where top is running, press CTRL-Z.

Note the background job ID number assigned to the process.

 Enter bg %<background_job_ID> at the shell prompt. The output

from top disappears while the process runs in the background.

Press CTRL-C.

Enter fg %<background_job_ID> at the shell prompt. The output

from top reappears as the process now runs in the foreground.

 Practice killing processes by completing the following steps:

Ensure that top is still running.

 Switch to the other terminal session where logged in as root .

Enter ps -e | grep top at the shell prompt.

 Note the PID of the top process.

Enter kill -SIGTERM <top_PID> at the shell prompt.

Switch back to the terminal session where top was running. Verify that

top has exited.

Load top again at the shell prompt.

 Switch back to the other terminal session where logged in as root .

Kill the top process by entering the killall -15 top command.

Switch back to the first terminal window and verify that top has exited.

 Exit out of top by pressing Esc and then exit out of the screen by

entering exit .

Scheduling Jobs

There are many occasions when a process needs to run automatically

without your intervention. Backups are a good example. One key problem

with backups is that people forget to do them! One of the worst things you

can do in the backup strategy is to rely on yourself to remember to run

them.

Instead, configure the Linux system to run programs automatically. This

removes the human element from the equation and ensures that the

specified programs execute regularly and on time. Three key utilities are

used to schedule processes to run in the future. We’ll discuss the following

topics in this section:

 Using the at daemon

 Using the cron daemon

 Using systemd timers

Using the at Daemon

Using the at utility is a great way to schedule a process. The at service

uses the atd system daemon, which runs in the background and monitors

the time and when to run at jobs. Most Linux distributions install this

service during the basic installation of the system. If not, it may need to be

installed manually with a package manager like rpm , dpkg , yum ,

apt-get , and so on.

To check the status of at , run the following command:

Phx:bigphil # systemctl status atd.service

To start that atd daemon, run the following as root :

Phx:bigphil # systemctl start atd.service

To ensure that atd starts at boot time, run the following as root :

Phx:bigphil # systemctl enable atd.service

Next, you need to specify which users can and cannot create at jobs.

You can do so by editing the following files:

 /etc/at.allow Users listed in this file are allowed to create at jobs.

 /etc/at.deny Users listed in this file are not allowed to create at

jobs.

NOTE Because the atd service checks the /etc/at.allow file

first, if an end user is listed in both /etc/at.allow and

/etc/at.deny , they will be allowed to use at !

To use at to schedule jobs, complete the following steps:

 At the shell prompt, enter the following:

Phx:tallphil # at time

The at daemon is very flexible as to how to specify the time value for

the command. Observe the syntax shown in Table 9-2.

Images

Table 9-2 The at Command Time Syntax Options

After running the at command, the at> prompt is displayed, as shown

here:

Images

 At the at> prompt, you then enter the command(s) to run at the scheduled

time. If the commands normally display output on the screen, an e-mail of

the output is sent to your account.

Alternatively, you can also redirect output to a file using > or >> . Here’s

an example:

Images

 Press ENTER to add additional commands. To run multiple commands within

the same job, each command should be on its own line.

 When done entering commands, press CTRL-D to see <EOT> , and the at>

prompt will disappear, the job will be scheduled, and a job number will be

assigned, as shown here:

Images

Once you have configured the schedule, you can use the atq command

to view a list of pending at jobs. Output similar to the following is

shown:

Images

As a regular user, the atq command displays only the jobs associated

with the current user account. As root, atq displays all pending jobs for

all users. To remove a pending job from the list, use the atrm

<job_number> command.

NOTE Another utility related to at is batch . The batch command

is not tested on the CompTIA Linux+ exam but is a nice way to schedule a

job. Instead of scheduling a specific time, the batch utility waits for low

system load and then starts the job.

In addition to using the at daemon, you can use the cron daemon to

schedule repeatable jobs (such as nightly backups or database updates), as

discussed next.

Using the cron Daemon

The at daemon is great, but it can only schedule a job to run once in the

future. Jobs often require running on a regular schedule. For example,

backups may need to run daily or weekly, and Linux provides a tool for

this.

The cron daemon, crond , can handle repetitious schedules. Unlike

at , cron runs commands on a schedule you specify. For example, you

can set up cron jobs to run nightly or weekly backups. That way, backups

occur automatically on a regular schedule.

The discussion continues with these following topics:

 How cron works

 Using cron to manage scheduled system jobs

 Using cron to manage scheduled user jobs

How cron Works

The crond daemon is a service that runs continuously in the background

and checks a special file called crontab once every minute to see if

there is a scheduled job it should run. Use the systemctl command to

manage the crond daemon.

By default, crond is configured to run automatically every time the

system boots on most Linux distributions. If it is not, to start it manually,

you need to do the following as root :

TableMove:dave # systemctl start crond.service

To check the crond daemon status, run the following:

TableMove:dave # systemctl status crond.service

To ensure that crond starts at boot time, run the following as root :

TableMove:dave # systemctl enable crond.service

You can configure cron to run system jobs or user-specific jobs, which

is covered next.

NOTE Extensions, or what Linux calls suffixes (such as .service ,

.c , .doc , and .txt), are ignored by Linux but are important to

applications such as systemctl , gcc , LibreOffice, gedit , and so

on. Learn more from the suffixes(7) man page.

Using cron to Manage Scheduled System Jobs

Using cron to schedule system jobs is extremely useful for a Linux

system administrator. You can configure systems to perform a wide variety

of tasks on a regular schedule automatically; for example, system backups

or rotating and compressing log files.

To schedule system jobs, use crond and the /etc/crontab file to

configure which jobs to run and when:

Images

In this example, the /etc/crontab file contains commands that are

used to run scripts found in four different directories:

 /etc/cron.hourly/ Contains cron scripts that are run every hour

 /etc/cron.daily/ Contains cron scripts that are run every day

 /etc/cron.weekly/ Contains cron scripts that are run weekly

 /etc/cron.monthly/ Contains cron scripts that are run once a

month

All scripts found in any of these directories are automatically run by

cron according to the specified schedule at root privilege. For

example, the /etc/cron.daily/ directory contains a variety of

scripts that are used to clean up the system and rotate the logs once each

day. These scripts are shown here:

Images

If you have a system task that needs to be run on one of these four

schedules, simply create a script file and copy it into the appropriate cron

directory in /etc/ .

Using cron to Manage Scheduled User Jobs

You can create your own scheduled jobs using a crontab file associated

with your user account. Depending on the Linux version, your crontab

file is saved in either /var/spool/cron/crontabs/<username> ,

/var/spool/cron/tabs/<username >, or

/var/spool/cron/<username> .

A crontab file is simply a text file that uses one line per job. Each

line has six fields, separated by tabs, as detailed in Table 9-3. The

crontab file also accepts characters such as the asterisk (*), comma

(,) , and hyphen (-) to fine-tune the schedule for various domains and

ranges. Also, you can use the forward slash (/) for step values. For

example, */2 in the Hour field means every two hours, instead of

showing 0,2,4,6,8,10,12,14,16,18,20,22 . You create and edit

your crontab file by running the following from the command prompt:

Images

Table 9-3 The crontab File Fields

Images

This opens the default editor to enable you to create or modify the

crontab file.

NOTE To change the default editor to gedit , for example, you can

enter the following:

actionshots:~ # EDITOR=/usr/bin/gedit ; export

EDITOR

To schedule a backup job that runs at 5:10 P.M. every day, after running

crontab -e , enter the following:

Images

After editing the file, save and quit. A new or modified crontab file

is completed in /var/spool/cron . In addition, the cron service is

reloaded so the new configuration can be applied.

To display the crontab file updates, run the following:

Images

Finally, crontab -r removes the crontab file.

If you incorrectly configure a cron job, you can cause system failure;

therefore, many system administrators restrict end users from using cron .

This is done by utilizing the /etc/cron.allow and

/etc/cron.deny files.

By default, only the /etc/cron.deny file is created automatically,

and it contains only one restriction by default for the guest user account. All

other users are allowed to create crontab files to schedule jobs. If the

administrator creates the /etc/cron.allow file, then only the users in

that file will be allowed to create crontab files; all others will be denied.

Because the crond service checks the /etc/cron.allow file first, if

an end user is listed in both /etc/cron.allow and

/etc/cron.deny , they will be allowed to use cron!

NOTE cron assumes computers run 24 hours a day. Laptops or

desktops are likely to be off or asleep during certain periods, so cron

won’t run. The anacron service works around this issue; if a job is

scheduled but the system is off, the missed job will automatically run when

the system comes back up.

Now practice working with Linux processes in Exercise 9-2.

Exercise 9-2: Scheduling Linux Processes

In this exercise, practice using the cron and at commands to schedule

processes to run in the future on the system. Perform this exercise using the

virtual machine provided online.

Images

VIDEO Please watch the Exercise 9-2 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot the Linux system and log in as a standard user.

 Open a terminal session.

 Switch to the root user account by entering su - followed by the

root password.

 Practice using the at daemon by doing the following:

At the shell prompt, enter the systemctl status atd command.

 Verify that the at daemon is running. If it isn’t, enter systemctl

start atd at the shell prompt.

Enter at now +5 minutes at the shell prompt.

 Enter ps -ef > ~/psoutput.txt at the at> prompt.

Press CTRL-D.

Generate a listing of pending at jobs by entering the atq command. The

job just created will be displayed.

Wait for the pending at job to complete.

 Use the cat command to check the ~/psoutput.txt file and verify

that the output from the ps command was generated correctly.

Enter at 2 pm tomorrow at the shell prompt.

Enter ps -ef > ~/psoutput.txt at the at> prompt.

 Press ENTER.

Press CTRL-D.

 Generate a listing of pending at jobs by entering atq and notice the job

just created. Note its job number.

 Remove the pending job by entering the atrm <job_number>

command.

Enter atq again. The pending job should be gone.

 Practice using cron by completing the following steps:

Log out of the root user account by entering exit .

 Enter crontab -e at the shell prompt.

Press Insert .

 Configure the system to create a backup of the user’s home directory every

day at 5:05 P.M. by entering the following:

05 17 * * * /bin/tar -cvf

~/mybackup.tar ~/

If waiting until 5:05 P.M. is inconvenient, specify a time value that is only

two or three minutes in the future.

Press Esc .

Enter :x and notice the message on the screen indicating that a new

crontab file has been installed.

Enter crontab -l and verify that the job was created correctly.

 Wait until the time specified in the crontab file and then check the

user’s home directory and verify that the mybackup.tar file was

created.

Remove the user’s crontab file by entering crontab -r at the shell

prompt.

Using systemd timers

The cron daemon is great when you want to automate tasks down to the

minute, but what if you want certain tasks to start at a specific second, or 60

minutes after booting? This is where systemd timers come in.

To schedule automated backups with systemd timers , you must

first create a system .service file, and then a .timer file. In this

section, you will learn how to

 Create a systemd .service file

 Create a systemd .timer file

 Launch the systemd timer

Creating a systemd .service File

You can create your own systemd service by creating a

.service file and placing it in the /usr/lib/systemd/system/

directory. As root , create a new .service file to automate backups:

Images

The .service file is divided into two stanzas:

 [Unit] Contains components shared by every systemd unit file

 [Service] Configures settings for the new service

For the [Unit] stanza, Description simply states what the

service does, and is displayed in the service list when running

systemctl list-units . WantedBy tells systemd that when

multi-user.target starts, make sure to start the new

autobackup.service too. Other options for WantedBy include

graphical.target , network.target , and more.

The [Service] stanza lists which application or script to start when

the new autobackup.service is called; this is listed in

ExecStart , and in the previous example bash starts the

autobackup.sh script. Always use the full path when setting the

application. ExecStop and ExecReload also exist to cleanly stop or

restart a service, respectively.

The Type setting can be set to simple or forking and

determines how systemd knows when a service is running. The

simple setting considers the application launched as the one running the

service. If the application stops, the service has stopped as well. The

forking setting is used for applications that fork another application.

The fork is the process tracked and is managed by the PID of the fork.

You would need to save the PID of the forked process to a file in order to

track it.

The Restart setting tells the service when it should be restarted. The

Restart options are always , no , on-abnormal , and on-

failure and are explained in Table 9-4.

Images

Table 9-4 Restart Settings for .service Files

The User and Group settings allow you to define which user and

group the process will run under. Launching all services as root could

cause security issues, so only set User and Group to root when

absolutely necessary.

To inform systemd of the new service, execute systemctl ’s

daemon-reload feature as shown here:

Images

Running systemctl start , enable , and status as shown in

this example will immediately start the service, enable the service to start at

boot time, and print the status of the service.

Creating a systemd .timer File

A systemd .timer file offers the benefit of assuring a job runs only once,

whereas with cron a job can run over itself if it takes too long to

complete. For example, a cron job that starts every hour can conflict with

itself if it takes two hours to complete the job. Multiple instances will start.

This is an issue .timer mitigates; if the job is already running, it won’t

start the new job.

Your first step is to remove the WantedBy setting from the

autobackup.service so that you can specify a time for the

autobackup service to start. You can use the sed command and its

in-place feature to update the file, as shown next. (sed is known as a

stream editor and is detailed in Chapter 13.)

Images

Next, you can create the timer by building the autobackup.timer

file. Notice the suffix is now .timer , not .service . Create this file

as root , as follows:

Images

Similar to a .service file, the .timer file is divided into stanzas.

OnCalendar sets the time the job will trigger, and its syntax is Day

Year-Month-Date Hour:Minute:Second . In our example,

autobackup will start at 8 P.M. every day. If the job is already running, it

will be skipped until the next day.

Unlike cron , OnCalendar understands shortcuts. For example, 8

P.M. everyday can be listed as follows:

Images

OnCalendar supports other values, such as daily if you want the

job to run once per day. Other settings include minutely , hourly ,

monthly , weekly , yearly , quarterly , and semiannually .

RandomizedDelaySec starts a job later than requested if the system

load is too high at the trigger time. Provide the maximum number of

seconds that you’re comfortable with delaying the job. In our example, the

job can be delayed up to one hour because it is set to 3600 seconds.

Persistent assures a job runs if the computer was powered off at

the job’s scheduled time. Once the system boots up, it will see that your job

didn’t run as scheduled and start it right away.

To configure a job to start after booting, use the OnBootSec option

instead of the OnCalendar option within the [Timer] stanza. If you

want a job to start 10 minutes after booting, set OnBootSec to 600

seconds as follows:

OnBootSec=600

or

OnBootSec=10 minutes

Timers start at boot through systemd . So that your new timer triggers,

make sure to set WantedBy to the timers.target .

NOTE Use the systemd-analyze tool to test when your jobs will

actually start, like so:

systemd-analyze calendar '*-*-* 20:00:00'

Launching the systemd timer

You can start the new timer within the system by reloading the systemd

daemon as follows:

OpenSUSE:/ # systemctl daemon-reload

Now, systemd has a way to manage and monitor your new timer.

Next you need to enable your new timer as follows:

Images

Running systemctl status autobackup.timer informs you

of the last time the timer ran and when it is expected to run again if defined

with OnCalendar .

If you no longer need the timer, you can disable it as follows:

Images

To track how your timers and services are running, use the

journalctl command to view system logs as follows:

Images

The --catalog option provides more details to log messages where

possible, --lines displays the last 1,000 lines of the log file, and --

pager-end jumps you to the last page of the output instead of the first

page. You can use the Right Arrow , Left Arrow , PageUp , and

PageDown keys to maneuver through the output.

Finally, to get a listing of available services and timers, run the following

commands:

Images

To track error messages on your system, use the journalctl search

feature to learn more about specific services, as follows:

Images

The --grep option searches for just DHCP-related issues in this

example. To view messages from a specific time, use the --since

argument:

Images

EXAM TIP Make sure you are familiar with several OnCalendar

formats within your timers.

Chapter Review

In this chapter, you learned that Linux is a multitasking operating system

and appears to run processes simultaneously, but only runs one job at a time

on a single CPU system. The jobs run so quickly, they appear to run at the

same time.

When a daemon is loaded, a system process is created. When you enter a

command at the shell prompt, a user process is created. User processes are

associated with a shell session; system processes are not. Managing running

processes is one of the key tasks performed on Linux systems. Configuring

the Linux system to run specified programs automatically ensures that the

programs execute regularly and on time.

You can schedule jobs using cron , at , or systemd timers .

Using systemd timers has the advantage of not restarting a job if

systemd sees the job is already running. This reduces conflicts within

the Linux system.

Here are some key facts to remember about Linux processes:

 When the systemd process loads a daemon, a system process is created.

 A process that spawns another process is called the parent.

 The new process that was created by the parent is called the child.

 All Linux processes can trace their heredity back to the systemd process

(depending on the distribution), which is the first process loaded by the

kernel on system boot.

 For distributions that use systemd , use the systemctl command to

start and stop system services.

 Use the top utility to view system processes.

 By default, the ps command only displays running processes in the

current shell.

 nice values range from –20 to +19 .

 The lower the nice value, the higher the priority of the process.

 The syntax for using renice is renice < nice_value > <PID> .

 Only root can assign a nice value less than 0 and use renice to

set a lower nice value than the current one.

 By default, processes launched from the shell prompt run in the foreground,

and the shell prompt is locked until the process is complete.

 To run a process in the background, append an & character to the end of

the command.

 When executed, the background process is assigned a job ID number.

 To move a process running in the background to the foreground, enter

fg <job_ID> at the shell prompt.

 To move a foreground process into the background, press CTRL-Z to stop the

process and then enter bg <job_ID> to move the process to the

background.

 Use the kill , pkill , top , or killall command to terminate a

job.

 Common kill signals used with kill or killall include

 SIGHUP (1)

 SIGINT (2)

 SIGKILL (9)

 SIGTERM (15) , the default

 To kill a process with kill , enter kill -<signal> <PID> at the

shell prompt.

 To kill a process with killall , enter killall -<signal>

<process_name> .

 Load a program using the nohup command to allow the process to

continue running after logging out.

 To schedule a process to run once in the future, use the at command.

 The at time value can be a fixed time, such as the following:

 HH:MM

 noon

 midnight

 teatime

 Use the atq command to view a list of pending at jobs.

 Use the atrm command to remove a pending at job.

 A crontab file contains one line for each command to run; each line

contains six fields:

 1 Minutes

 2 Hour

 3 Day

 4 Month

 5 Day of the week

 6 Command to execute

 A user can create a crontab file by entering crontab -e at the shell

prompt.

 The OnCalendar syntax is Day Year-Month-Date

Hour:Minute:Second .

 OnCalendar understands shortcuts. 6 P.M. everyday can be listed as

 Sun..Sat *-*-* 18:00:00

 --* 18:00:00

 18:00:00

 18:00

Questions

 Which two commands below output the process ID (PID) of a program?

(Choose two.)

 pidof

pgrep

 pname

 proc

 Which process could be the grandparent of all processes running on a Linux

system?

 bash

sh

 ps

 systemd

 Which of the two following are valid OnCalendar date settings?

(Choose two.)

 15 * * * 1-5 /usr/local/bin/job.sh

15:34

 teatime

 * *-*-* 15:34:00

 Which ps command will display extended information about only the

processes associated with the current terminal session?

 ps

ps -e

 ps -f

 ps -ef

 What is a zombie process?

 A process that has finished executing but whose parent process has not

released the child process’s PID

A process that has stopped executing while waiting for user input

 A process that is being traced by another process

 A process that has gone to sleep and cannot be interrupted

 Which ps option can be used to display all currently running processes?

 -c

-e

 -f

 -l

 The myapp process has a nice value of 1 . Which of the two following

nice values would increase the priority of the myapp process? (Choose

two.)

 –15

5

 19

 0

2

 Which of the following two shell commands will load the myapp program

with a nice value of –5 ? (Choose two.)

 myapp -n -5

nice -5 myapp

 renice -5 myapp

 nice -n -5 myapp

nice –5 myapp

 The myapp process (PID 2345) is currently running on the system.

Which of the following two commands will reset its nice value to –5

without unloading the process? (Choose two.)

 myapp -n -5 -p 2345

renice -n -5 2345

 renice -5 2345

 nice -n -5 2345

 Which command will load the myapp program from the shell prompt and

run it in the background?

 myapp -b

myapp &

 myapp –bg

 myapp

 Which kill signal sends a CTRL-C key sequence to a running process?

 SIGHUP

SIGINT

 SIGKILL

 SIGTERM

 A user needs to kill a hung process by its process name, not its PID .

Which two utilities could best be used? (Choose two.)

 killall

kill

 hangup

 SIGKILL

pkill

 You want to run the rsync command to synchronize the home directory

with another server on the network, but you know this command will take

several hours to complete and you don’t want to leave the system logged in

during this time. Which command will leave rsync running after logout?

 SIGHUP

nohup

 stayalive

 kill -NOHUP

 It’s currently 1:00 in the afternoon. To schedule the myapp program to run

automatically tomorrow at noon (12:00), which two of the following at

commands is best to use? (Choose two.)

 at 12 pm tomorrow

at tomorrow -1 hour

 at now +1 day

 at today +23 hours

at now +23 hours

 Which of the following crontab lines will cause the

/usr/bin/myappcleanup process to run at 4:15 A.M. on the first of

every month?

Answers

 A, B. Running pidof <process_name> or pgrep

<process_name> will output the PID of the running process.

 D. All processes can trace their heredity to systemd .

 B, D. OnCalendar will run a job every day at 3:34 in the afternoon with

either of these two settings.

 C. The ps -f command will display extended information about

processes associated with the current shell session.

 A. A zombie process is one that has finished executing but whose parent

process wasn’t notified and, therefore, hasn’t released the child process’s

PID .

 B. The ps -e command can be used to display a list of all running

processes on the system.

 A, D. The lower the nice value, the higher the priority of the process.

Therefore, nice values of –15 and 0 will increase the priority of the

myapp process.

 D, E. The nice -n -5 myapp and nice --5 myapp commands

will load myapp with a nice value of –5 .

 B, C. The renice -n -5 2345 and renice -5 2345 commands

will reset the nice value of the myapp process while it’s running.

 B. The myapp & command will cause myapp to run in the background.

 B. The SIGINT kill signal sends a CTRL-C key sequence to the specified

process.

 A, E. The killall utility uses the process name in the command line

and can be used to kill the process in this scenario. The pkill command

can be used to search for and kill a hung process by its name.

 B. The nohup command can be used to load a program so that it will

ignore the SIGHUP signal that is sent when the user logs out, thus allowing

the process to remain running.

 A, E. Enter at 12 pm tomorrow or at now +23 hours to cause

the atd daemon to run the specified command at 12:00 P.M. on the

following day.

 A. The 15 4 1 * * /usr/bin/myappcleanup

crontab line will cause the myappcleanup process to be run at 4:15 A.M.

on the first day of every month no matter what day of the week it is.

CHAPTER 10
Managing Linux Applications

In this chapter, you will learn about

 Using a package manager to install applications

 Installing applications on Red Hat with RPM

 Installing RPMs with YUM, DNF, and ZYpp

 Installing applications on Debian with dpkg

 Installing applications on Debian with APT

 Using universal Linux app stores

 Installing applications from source code

 Managing shared libraries

What I liked about computers is that they were pure logic…thinking things

through.

—Roy L. Clay, HP Computer

As a Linux system administrator, you must know how to install and manage

software on a Linux system. The CompTIA Linux+ exam includes

questions testing your knowledge of the RPM, dpkg , YUM, DNF, APT,

and ZYpp package management tools. Also, make sure you are familiar

with compiling and installing applications from source code.

Using a Package Manager to Install Applications

Regardless of which package manager your distribution uses, it will

perform tasks similar to all package managers, including the following:

 Installing applications

 Updating applications that have already been installed

 Uninstalling applications

 Querying installed applications

 Verifying the integrity of installed applications

Two key aspects of package managers are that they install files according

to the Linux Filesystem Hierarchy Standard (discussed in Chapter 5),

putting files where they belong. The other job is handling application

dependencies. For example, if you install the application A.PKG , the man

pages will be placed in /usr/man , the libraries in /usr/lib , and the

application in /usr/bin .

If A.PKG is dependent on B.PKG , then B.PKG must be installed

first. During software installation, you can get into a situation where

package B.PKG requires C.PKG to be installed first, C.PKG requires

D.PKG to be installed first, and so on until you get to ZZZ.PKG needs to

be installed. System administrators call this dependency hell, and what you

thought was a five-minute job becomes an all-day job because you must

search for dependencies just so you can successfully install A.PKG .

This is resolved with repository-aware package managers like YUM,

ZYpp, and DNF, which automatically find, download, and install

dependencies. Now, a five-minute installation is only five minutes! These

will be discussed after you learn about installing with RPM.

Table 10-1 lists some package manager terms you should know.

Images

Table 10-1 Package Management Terms

Installing Applications on Red Hat with RPM

The Red Hat Package Manager, RPM, was originally developed in 1997 to

install and upgrade software applications in Red Hat Linux distributions.

RPM also contains facilities to query the package database and verify the

integrity of installed packages.

RPM applications are used on Red Hat Enterprise Linux (RHEL),

CentOS, SUSE Linux Enterprise Server (SLES), OpenSUSE, Oracle Linux,

Rocky Linux, and Fedora-based systems. In this section, we will discuss

 RPM package naming conventions

 RPM command options

 RPM application installation

 RPM application upgrades

 RPM application removal

 RPM application verification

 RPM database querying

 RPM conversion to CPIO

To install, update, and remove RPM applications, you’ll use the rpm

command. The command rpm --help displays RPM help information.

Let’s begin by exploring RPM naming conventions.

RPM Package Naming Conventions

The syntax of an RPM package name is as follows:

Images

The following list explains these elements, using an example of a

package named bash-3.2-32.el5.x86_64 :

 package_name This part of the filename simply identifies the name of

the package. In this example, the name of the package is bash .

 version_num This part of the package name specifies the version of

the software in the package. In our example, the version number 3.2

indicates the third edition of the software and that it has had two major

changes since the third edition was released.

 release_num This part of the package name indicates the current

release of the software version. In our example, the software release is 32 .

 distribution The distribution designator indicates that the package

has been compiled for a specific Linux distribution. In our example, the

distribution designator is el5 (Red Hat Enterprise Linux 5).

 arch This part of the package name specifies the CPU architecture that

the software inside the package will run on. In our example, the architecture

is specified as x86_64 , which means the software will run on 64-bit x86

CPUs. You may also see the following architectures specified in a

package’s filename:

 i386 Specifies that the software will run on an Intel 80386 or later CPU

 i586 Specifies that the software will run on an Intel Pentium or later

CPU

 i686 Specifies that the software will run on Intel Pentium 4 or later

CPUs

 x86_64 Specifies that the software will run on 64-bit x86 CPUs

 athlon Specifies that the software is intended to run on an AMD Athlon

CPU

 ppc Specifies that the software is intended to run on the PowerPC CPU

 noarch Specifies that the package is not architecture dependent

RPM Command Options

The command syntax for managing rpm packages is as follows:

Images

The rpm command may require either the application name or

application filename as an argument. The application name is used when

referencing the databases in /var/lib/rpm . The application filename is

the path to the storage location of the application.

RPM uses multiple modes to manage packages, as detailed in Table 10-

2.

Images

Table 10-2 RPM Modes

RPM Application Installation

To install, erase, update, or freshen a package, you must have root

privileges. The command rpm -i <package_name> will install an

application on your system. Use the command rpm -i

ftp://<ftp_address> <package_name> to install a package

from an FTP server.

Table 10-3 contains a partial list of RPM installation options.

Images

Table 10-3 RPM Installation Options

RPM Application Upgrades

The RPM upgrade option, -U or --upgrade , will upgrade current

applications or install new applications if not already installed.

When RPM upgrades an application, it retains the configuration files.

When the upgrade changes default configuration files, instead of

overwriting it, it saves the new configuration files as . rpmnew . You

should review this file to determine if you should modify or replace the

current configuration file.

Sometimes the new configuration file must replace the current one. In

this case, your old file is saved as . rpmsave in case there are settings you

need to add to the new configuration file.

Some --upgrade options are displayed in Table 10-4.

Images

Table 10-4 RPM Upgrade Options

Images

EXAM TIP Key exam concepts are to understand that the -i option

only installs a package, the -F option updates only existing packages, and

the -U option upgrades existing packages or installs packages if not

already installed.

RPM Application Removal

The --erase option removes a package. For example, the command

rpm -e <pkg_name> removes a package. During the package

removal, rpm -e

 Checks to make certain no other package depends on the package to be

erased.

 Determines whether any of the package configuration files have been

modified and saves a copy of any modified files.

 Determines if a file that’s part of the package is required by another

package. If it’s not, the file is erased.

 Removes all traces of the package and associated files from the RPM

database.

Finally, note that a package may contain pre-uninstall and post-uninstall

scripts. These scripts would be executed as part of the erase process. The -

-erase option will not erase a package if there are dependencies, unless

the --nodeps option is specified. Also, consider using the --test

option prior to erasing a package to check for any potential conflicts.

RPM Application Verification

RPM tracks changes to packages and files. The --verify option

compares files and packages installed on the system with the RPM database

and also verifies whether package dependencies are met. The output of the

--verify option is a series of codes that may be used to determine if the

system configuration has changed or the RPM database is corrupt. The

changes are usually benign, but could also mean the files were tampered

with, possibly by a hacker!

The --verify option compares the following install information with

the RPM database:

 File ownership

 File group ownership

 File permissions

 File checksum

 File size

 Validity of symbolic links

 File major and minor numbers (used only for block and character device

files)

 File modification time

To verify a package, execute the command rpm -V

<package_name> or rpm --verify <package_name> . Adding

an additional -v will display files associated with the package, even if

there are no errors. To verify all packages, execute the command rpm -

Va .

The output of the command is a series of code designators as follows:

SM5DLUGT <attribute marker> <filename>

If the code designator appears, then the condition exists. For example, if

the number 5 appears, then the current checksum differs from the original

checksum, which means the file has been modified.

Table 10-5 defines the different verify code designators.

Images

Table 10-5 RPM Verify Codes

Table 10-6 defines the RPM verify attribute codes. Attribute codes

appear only if the attribute is applied to the file.

Images

Table 10-6 RPM Verify Attribute Codes

Figure 10-1 contains the edited output of the rpm -Va command:

Images

Figure 10-1 Error codes for rpm -Va

 Line 2 indicates the configuration file

/var/lib/unbound/root.key has a different size, file signature,

and modification time.

 Line 3 states that the file /var/run/pulse is missing.

 Line 4 shows that the permissions have changed in the ghost file

/var/lib/setroubleshoot/email_alert_recipients .

 Line 6 indicates that the owner and group owner of the ghost file

/var/run/avahi-daemon have changed.

RPM Database Querying

The --query mode allows a user to search for package data in the RPM

database. Several --query options are shown in Table 10-7.

Images

Table 10-7 RPM Query Options

The command rpm -qcf /usr/bin/passwd displays the

configuration files for the passwd command. Consider using the

command rpm -qif /usr/bin/passwd to find out package

information for the package that contains the passwd command.

RPM Conversion to CPIO

The command rpm2cpio produces a cpio archive from an RPM

package. This allows you to extract the application without installing it, in

case you want to do further investigation before using it. The syntax is as

follows:

Images

Table 10-8 lists some cpio options.

Images

Table 10-8 cpio Options

To list the contents of a package, execute the command

rpm2cpio <package_filename> | cpio -t

To extract an entire package, execute the command

rpm2cpio <package_filename> | cpio -idv

Extract a file from an RPM package with

rpm2cpio <package_filename> | cpio -idv <filename>

Images

NOTE The extraction will occur in the current working directory. It is

advisable that you use an empty directory.

Next apply some of what you learned in this section by completing

Exercise 10-1.

Exercise 10-1: Practicing Package Manipulation with RPM

In this exercise, you’ll practice using some of the RPM commands you have

just learned. Be sure to use the CentOS image provided and log in as user

root with a password of password . Follow these steps:

Images

VIDEO Please watch the Exercise 10-1 video for a demonstration on how

to perform this task.

 Create a snapshot.

 Determine the installation date of the bash package by executing the

rpm -qi bash or rpm -qif /usr/bin/bash command.

 Look at the package that installed the command /usr/bin/bash by

executing the command rpm -qf /usr/bin/bash , and then review

the output of the command in step 2 to see the package the

/usr/bin/bash file came from.

 What other packages are required (package dependencies) by the bash

package? Execute the rpm -qR bash or rpm -q --requires

bash command for the answer.

 Determine what packages are required by the lsscsi package and then

try to remove the lsscsi package by executing the command rpm -e

--test lsscsi (this will simulate removing the package). Compare

the output of the rpm -q --whatrequires "lsscsi" command

with the output of the rpm -e --test lsscsi command.

 Use the rpm -qc bash command to determine which configuration

files are provided with the bash package.

 Determine what configuration files are affecting a command. Use the

command rpm -qcf /usr/bin/passwd to determine the

configuration files used by the passwd command.

 Verify the package that provides the command lsscsi by executing the

following commands:

Images

 Execute the sudo rpm -qVf /etc/at.deny command and review

its output. The output displays what has changed since the file was

installed.

 View the list of files in the bash package. Execute the command cd

/run/media/root/"CentOS 7 x85_64"/Packages

Next, execute the rpm2cpio $(rpm -qf /usr/bin.bash).rpm

| cpio -t command.

The rpm2cpio command requires a package filename. The command

rpm -qf will provide a package name but not a package filename.

$(rpm -qf /usr/bin/bash) will output the package name, and

.rpm adds the suffix .rpm to the end of the package name.

Installing RPMs with YUM, DNF, and ZYpp

In this section you will learn the following package managers for Red Hat–

class systems:

 The YUM package manager

 The DNF package manager

 The ZYpp package manager

YUM, DNF, and ZYpp all make use of package repositories to

download, install, or update applications. Unlike RPM, repository-aware

applications search for dependencies and download those automatically.

The YUM Package Manager

YUM, or Yellowdog Updater, Modified, is a package manager that is a

command-line front end to RPM. YUM allows users with root privileges to

add, remove, and search for available packages and their dependencies.

YUM’s main configuration file is /etc/yum.conf , discussed next.

The /etc/yum.conf File

The file /etc/yum.conf is a global YUM configuration file that

contains a list of directives assigned a value (see Figure 10-2). If the

directive’s value is 0 , the directive is not asserted; if the directive value is

1 , the directive is asserted.

Images

Figure 10-2 A sample /etc/yum.conf file

Directives configured in /etc/yum.repos.d take precedence over

directives configured in /etc/yum.conf . Table 10-9 reviews some

directives found in /etc/yum.conf .

Images

Table 10-9 yum.conf Directives

The /etc/yum.repos.d Directory

As stated earlier, packages are stored in repositories. For yum to install a

package, it must know how to locate the repositories. The location of

repositories is defined in /etc/yum.conf or files inside of the

/etc/yum.repos.d directory.

Repository Definition Files

Repository definition files contain information on how to access a specific

repository. Figure 10-3 shows edited output of the file CentOS-

Base.repo . We examine some of the directives in this section.

Images

Figure 10-3 A sample repo configuration file

Section Name Each repository definition starts with a repository name

enclosed in left and right brackets, called a stanza. In Figure 10-3, we find

two repositories: [base] and [updates] .

name= The name directive is a description of the repository definition

file.

mirrorlist= The mirrorlist directive defines a location that

contains a list of base URLs.

baseurl= This directive is a URL to the directory where repository data

is located. The directive has several formats:

 If the repository is located on the local machine, use

file:///<path_to_repository>

 If the repository is on an FTP server or is sent over HTTP, use

ftp://<path_to_repository> or

http://<path_to_repository>

 To add a username or password, you use ftp://<username>:

<password>@<path_to_repository> or

http://<username>:<password>@<path_to_repository>

gpg There are two directives associated with gpg :

 The directive gpgcheck = takes a value of 0 or 1 . A value of 1 tells

yum to check GPG signatures.

 gpgkey= defines the location yum will use to import the GPG key.

enable= The enable= directive also takes a value of 0 or 1 . If the

value is 0 , yum will not use the repository defined in the section as a data

source.

Images

EXAM TIP Understand that /etc/yum.conf and

/etc/yum.repos.d manage package repositories, but the content and

syntax of these files are not tested on the exam.

YUM Commands

The YUM utility will search for packages from repositories listed in

/etc/yum.conf and /etc/yum.repos.d/ and install, update, list,

and remove them and their dependencies. Common YUM commands for

listing installed and available packages are described in Table 10-10.

Images

Table 10-10 Basic yum Listing Commands

Images

NOTE One repository that you might like is the EPEL repository, which

provides Extra Packages for Enterprise Linux. For example, the extra

packages include Python modules and popular browsers. Run yum

install -y epel-release to access the new features.

Using YUM to Install, Remove, and Update Packages

In this section, we review commands and options used to install, remove,

and update packages using the YUM package manager. Table 10-11

displays the commands used to install, update, and remove packages.

Images

Table 10-11 yum Install, Erase, and Update Commands

Images

EXAM TIP Note that some packages have different names than expected,

such as the httpd package for apache2 , or the bind package for the

DNS nameserver. For example, the command to install the DNS server is

yum install bind , not yum install dnsd .

There may be cases where you want to download an application before

installing it. To do this, either run

Images

or use the yumdownloader utility and run yumdownloader

<pkg> .

Exercise 10-2: Practicing Package Manipulation with YUM

In this exercise, practice using some of the yum commands you have just

learned. Be sure to use the CentOS image provided and log in as user

root with a password of root . Follow these steps:

Images

VIDEO Please watch the Exercise 10-2 video for a demonstration on how

to perform this task.

 Create a snapshot.

 Look at the package that installed the command /bin/bash by

executing the yum provides /bin/bash command.

 Execute the yum deplist bash command to see what other packages

are required (package dependencies) by the bash package.

 Execute the command yum repolist to display a list of enabled

repositories.

 Use the command yum list installed to list the packages installed

on your system.

 Execute the command yum list kernel to list installed kernel

packages.

 Execute the command yum list available kernel* to list

available kernel packages.

 Use the command yum check-update to check the enabled

repositories for available package updates.

 Select one of the packages on the list and execute the yum update

<package> command.

 Execute the command yum update to update all the packages on your

system. Warning: This may take a long time.

The DNF Package Manager

DNF, or Dandified YUM, is the package manager that has replaced YUM

on Red Hat–class systems and SUSE. Major improvements of DNF over

YUM are improved dependency resolution, better memory usage, and

higher performance. The subcommands are the same as for YUM, as shown

in Tables 10-10 and 10-11. In fact, you can redo Exercise 10-2 by replacing

all instances of yum with dnf .

One subcommand available in DNF but not YUM is system-

upgrade . Use this option with the dnf command to perform a kernel

update and upgrade to the latest Red Hat version.

DNF uses a few new configuration files and directories to manage

repositories. Table 10-12 lists and describes DNF configuration files.

Images

Table 10-12 dnf Configuration Files

Again, most of the yum commands may be executed with dnf by

changing yum to dnf . For example, the command dnf install

vim will install the vi -improved application. Refer to the preceding

section on YUM, as we will not duplicate other command examples here.

The ZYpp Package Manager

ZYpp is the SUSE repository-aware package manager that is the front end

to the RPM package manager.

Images

NOTE SUSE also offers a GUI-based, all-purpose systems administration

tool called YaST that manages packages, users, security, networking, and so

on.

ZYpp uses configuration files and directories to manage repositories.

Table 10-13 lists and describes ZYpp configuration files.

Images

Table 10-13 zypper Configuration Files

Installing, Updating, and Removing Packages with ZYpp

The command zypper install <package_name> or zypper

in <package_name> is used to install a package. You may also use the

install subcommand to remove one package while adding another by

using the + or – character. For example, the command zypper

install nano -vim or zypper remove vi +nano will install

nano and remove vim .

Updating Packages with zypper

ZYpp is capable of patching existing packages and updating the system.

The command zypper list-patches displays a list of required

patches. The command zypper patch installs existing patches.

System-wide package updates may be applied using the command

zypper update . To apply updates to a specific package, execute the

command zypper update <package> .

Removing Packages with zypper

To remove a package, execute the command zypper remove

<package_name> or zypper rm <package_name> .

Using zypper to Dump Package Info

The zypper info command may be used to obtain package

information. The syntax is zypper info <option>

<package_name> or zypper if <option> <pkg_name> .

Table 10-14 lists and describes some package info options.

Images

Table 10-14 Package Info Options

Working with ZYpp Repositories

Every zypper repository has a unique identification number (see Figure

10-4), alias name, and repository name and priority. The command

zypper repos or zypper lr will display a list of repositories and

their alias names. The output also indicates whether the repository is

enabled and if it has been refreshed.

Images

Figure 10-4 Using zypper lr to list repository information

Table 10-15 displays commands used to refresh repository information.

Images

Table 10-15 zypper Refresh Repository Commands

Repository configuration information may be found by executing the

command zypper repos -d .

Adding a Repository with zypper

The command zypper ar <url> or zypper addrepo <url>

will add a repository. Once the repository is added, you can add an alias

name. First, use zypper lr to find the new repository’s ID number.

Then use the command zypper nr <id_number> <repo_name>

or zypper namerepo <id_number> <repo_name> .

Removing a Repository with zypper

The command zypper rr <repo_name> or zypper

removerepo <repo_name> will remove a repository.

Enabling and Disabling Repositories with zypper

A repository may be modified by using the command zypper mr or

zypper modifyrepo . Referring again to Figure 10-4, you will see the

repository ID 6, rep-oss , is enabled. To disable the repository, execute

zypper mr -d 6 or zypper modifyrepo -d 6 . To enable a

repository, change the -d to -e .

Installing Applications on Debian with dpkg

Distributions based on the Debian distribution use the Debian Package

Manager (dpkg) instead of RPM, YUM, DNF, or ZYpp. Popular

distributions include Ubuntu, Mint, Parrot, Knoppix, and Kali. In this

section, we discuss how to manage Debian software packages. The

following topics are addressed:

 Debian package naming conventions

 Managing applications with dpkg

 Viewing application information with apt-cache

Debian Package Naming Conventions

Debian packages use a naming convention similar to RPM packages. The

syntax is <package_name>_<version>_<architecture>.deb .

For example, for 3dchess the format is 3dchess_0.8.1-

16_i386.deb . The convention is detailed here:

 package_name Like with RPM, this is simply the name of the package.

In the example, the name of the application in the package is 3dchess .

 version Specifies the version number of the package. In this example,

it is 0.8.1-16 .

 architecture Specifies the hardware the package will run on. In the

example, i386 indicates the package will run on Intel 80386 or later

CPUs.

Managing Applications with dpkg

The key command-line utility used to install, remove, and upgrade Debian

packages is dpkg . The syntax for using dpkg is dpkg <action>

[<options>] <package_name> (or <package_filename>).

You can use the actions and options listed in Tables 10-16 and 10-17

with the dpkg command to install an application but ignore dependencies,

or remove a package and the configuration files.

Images

Table 10-16 dpkg Command Actions

Images

Table 10-17 dpkg Command Options

For example, to do a dry-run install of the hoichess application,

combine the -i action with the --dry-run option as shown here:

dpkg -i --dry-run hoichess_0.22.0-2_amd64.deb

This assumes that the hoichess_0.22.0-2_amd64.deb file is in

the current directory.

The dpkg configuration files are located in /etc/dpkg and

/var/lib/dpkg . For example, the /etc/dpkg/dpkg.cfg file

contains the dpkg default options, and the /var/lib/dpkg/status

file contains the status of the available packages.

Images

NOTE There is a package available called alien that converts .deb

packages to .rpm , and vice versa. Run apt install alien on

Debian-class systems, or dnf install alien on Red Hat–class

systems if the EPEL repository is configured.

Viewing Application Information with apt-cache

In addition to dpkg , you can also use several APT (Advanced Package

Tool) tools to manage packages on Debian-class systems. The apt-

cache command is used to query package information from the Debian

package repository database which includes /etc/apt/apt.conf and

/etc/apt/sources.list files or the /etc/apt/apt.conf.d/

or /etc/apt/sources.list.d/ directories. These files and

directories contain the locations as to where to search and find devices and

applications. Common apt-cache commands are shown in Table 10-18.

Images

Table 10-18 Common apt-cache Commands

Installing Applications on Debian with APT

In addition to apt-cache , the APT suite of tools also includes a

repository-aware installer called apt-get or apt . This is the

equivalent to the yum repository-aware utility on an RPM system.

The /etc/apt/sources.list file and the

/ etc/apt/sources.list.d/ directory define the repositories from

which apt can install packages. As with yum , these repositories can

reside on a local optical disc, a local hard drive, or a server on the Internet.

A sample sources.list file is shown here:

Images

Package repositories are identified in this file with the prefix deb ,

whereas source file repositories are identified with deb-src . After the

prefix, the URL to the repository is specified.

The syntax for using apt is pretty straightforward:

Images

Commonly used apt actions and options are listed in Tables 10-19 and

10-20, respectively.

Images

Table 10-19 Common apt Actions

Images

Table 10-20 Common apt Options

Troubleshooting an Application Crash

When installing applications with APT, DNF, or ZYpp, you must be certain

that you’re installing the latest software. Differences in software versions,

because a version is too old, for example, could cause applications to crash.

On Red Hat–class systems run dnf update or dnf upgrade (or

zypper refresh and then zypper update on SUSE systems) to

make sure you’re pulling applications from the most recently updated

repositories; otherwise, you could download old applications that can cause

system downtime.

On Debian-class systems, run apt update first, then app

upgrade . On Red Hat update and/or upgrade both connect to the

latest repositories and upgrade applications. But on Debian systems,

update verifies that you’re connected to the most updated repositories,

then upgrade performs the software upgrade. So when performing an

upgrade on Debian, run apt update , then apt upgrade .

Images

EXAM TIP To manipulate software on an Arch Linux distribution, use

the pacman command. Run pacman -S <pkgname> to install, and

pacman -R <pkgname> to remove an application.

Using Universal Linux App Stores

As you have seen, each Linux version has its own method to install

applications. Wouldn’t it be nice to have a package manager that works on

all versions of Linux? What comes closest to this are universal packaging

systems.

Universal packaging allows you to run a mixed Linux environment of

Oracle Linux, Ubuntu, and SUSE and not have to bother with knowing

when to use DNF, APT, or ZYpp. In this section, we’ll discuss the three

most popular sandboxed applications:

 Snap fundamentals

 Flatpak fundamentals

 AppImage fundamentals

Snap Fundamentals

Snap is managed by Canonical, the same organization that releases Ubuntu

Linux. Canonical maintains the Snap package manager and the Snap Store.

A snap is a bundle of an app and its dependencies that works without

modification across Linux distributions.

From the Snap Store, you can download development apps, games,

social networking apps, productivity apps, photo and video production

apps, and more. Plus, the Snap Store has snaps to manage and update your

Internet of Things (IoT) devices. The snapd demon runs in the

background to keep your applications running while using Snap. Visit the

Snap store at https://snapcraft.io , shown in Figure 10-5, to get

started using snaps.

Images

Figure 10-5 The snapcraft.io app store

Flatpak Fundamentals

Like Snap, Flatpak (https://flatpak.org/) offers a universal

package manager for many Linux distributions. Flatpak works together with

the Flathub app store as its package repository, which offers the latest stable

packages. Flatpak’s app library is primarily composed of desktop

applications. Visit the Flathub app store at https://flatpak.org or

https://flathub.org , shown in Figure 10-6, to get started using

Flatpak.

Images

Figure 10-6 The flathub.org app store

AppImage Fundamentals

Of the three universal package managers, AppImage is the most popular,

storing more than 1,000 applications in the AppImages store. A huge

benefit is that dependencies are handled internally, so you will not have to

handle any dependency issues. Visit the AppImages app store at

https://appimage.github.io , shown in Figure 10-7, to get

started using AppImage. AppImage uses their app image hub to store their

AppImage package manager.

Images

Figure 10-7 The appimage.github.io app store

The key idea of the AppImage format is one app = one file. Learn more

at https://appimage.org .

Installing Applications from Source Code

In addition to installing software using a package manager, you can install

software on Linux from source code. In fact, many of the applications and

services you will install on a Linux system will be delivered as source code,

not as a binary executable. When you install the software on your local

system, you actually compile the source code from the installation files into

a binary executable that can be run.

Distributing software in this manner has many advantages. Key among

these is the fact that you don’t have to create a separate executable and

installation package for each delivery architecture and platform. You can

have the installation process detect the type of system the software is being

installed on and compile the software appropriately.

The key disadvantage to this approach is the fact that it makes the

installation process much more complex. Users must have a compiler

installed on their system; otherwise, they won’t be able to compile the

source code into a binary executable. In addition, the user must know the

proper procedure for compiling the source code and installing the resulting

executable.

Fortunately, a standard process for completing this task has been adopted

by most developers. This process is composed of

 Preparing the installation files

 Compiling the executable

 Installing the executable

Finally, you will learn how to uninstall software compiled from source

code.

Preparing the Installation Files

The first step in installing an application from source code is to download

the appropriate installation files from the Internet. For example, if you

wanted to install the pure-ftpd service, an FTP server, you would

navigate to the website

https://www.pureftpd.org/project/pure-ftpd/ and

download the installation files.

Using wget and curl to Download Source Code

The wget and curl commands are utilities available for downloading

software and source code when a web browser such as Firefox cannot be

used; for example, from a server with only a command-line interface (CLI).

As an example of using wget , running the following command

downloads the gnuchess source code:

Images

To use curl to download the source code of the emacs editor to

replace the vi editor, run

Images

Images

EXAM TIP The wget and curl commands are common utilities used

on Linux servers for downloading source code on command-line interfaces.

For a command-line web browser, use links .

One thing you’ll notice about installation files used to install from source

code is that they are usually distributed as a tarball file. Tarball files usually

have a .tar.gz or .tgz extension. Because these applications are

distributed as tarballs, you must first use the command gunzip to

decompress the archive and the tar command to extract the archive. For

example, running gunzip pureftpd.tar.gz would create the file

pureftpd.tar .

Next, execute the command tar -xvf <tar_filename> to untar

the file. The tar command is used to create and extract archive files. To

untar pureftpd.tar , you would run the command tar xvf

pureftpd.tar (the dash for the tar command is optional).

Images

TIP tar stands for tape archiver, because it was originally designed for

making backups to magnetic tape.

You don’t have to uncompress the file with gunzip first; tar has

built compression into the application. After downloading the tarball, create

a directory to extract the file to and then move the file to that directory.

Change to that directory, and then run tar -zxvf <filename> to

decompress and extract the archive to the current directory.

Images

NOTE You can also run tar xvf file.tar.gz . The tar

command automatically recognizes when a file is compressed and extracts

it properly.

For example, to extract pureftpd you can enter tar zxvf

pureftpd.tar.gz at the shell prompt. The z option performs the

gzip or gunzip compression operations depending on if you are

creating or extracting an archive. The source files are extracted to the

current directory and are used to create the executable application, as well

as a variety of utilities needed to help create the executable. Here is a

sample list of files:

Images

With the files extracted, you next need to prepare the installation files to

be compiled. You do so by using the configure script. To run this

script, first verify that you’re in the directory created when the tarball was

extracted; then enter ./configure at the shell prompt, as shown here:

Images

Placing ./ in front of configure tells Linux to look in the current

directory for the file named configure , because . means current

directory.

The configure file is a script that does two things when it is run.

First, it checks your system to make sure all the necessary components

required to compile the program are available. One of the most important

tools it checks for is the existence of a C compiler. If you don’t have a C

compiler, such as the GNU C Compiler (gcc) or the GNU C++ Compiler

(gcc-c++), the configure script will display an error on the screen

instructing you to install a compiler and then run configure again. It

also verifies that your overall system environment is compatible with the

program you’re going to install.

Second, the configure file also creates a very important file called

Makefile . Because most source code applications are designed to be

deployed on a variety of distributions and architectures, the installation

program needs to know how to customize the source code files such that the

resulting executable will run on your specific system.

One of the last steps the configure script takes is to create a

Makefile file. The Makefile file contains specific instructions for

how the executable should be compiled to run on your platform.

Once configure has been run and the Makefile created, the next

step in the process is to compile the executable. Let’s discuss how this is

done next.

Compiling the Executable

At this point, the program to install still exists only as source code. Before

you can run it, you must convert the text-based source code into a binary

executable file. You do so by using the make command.

The make command calls the C compiler and directs it to read the

source code files, using the specifications and options listed in the

Makefile file, and then generates a compiled executable file. Simply

enter make at the shell prompt without any options. Here is an example:

Images

Images

Understand that make only creates the executable. Before you can use

your new program, it needs to be installed according to the Filesystem

Hierarchy Standard (FHS). make can copy the executable, startup scripts,

and documentation files to the appropriate directories in your filesystem.

Let’s discuss how this is done next.

Installing the Executable

To install the new executable on your system, run make install . This

tells make to place the executable program into /usr/bin/ , the

program libraries into /usr/lib/ , and the program’s man pages into

/usr/man/ , following the instructions in the INSTALL portion of the

Makefile file. The make utility will then install the application, as

shown here:

Images

At this point, the application or service is ready to run. Simply enter the

appropriate commands at the shell prompt.

Exercise 10-3: Building Software from Source Code

In this exercise, you will practice installing the Pure-FTPd software from a

tarball.

You can perform this exercise using the virtual machine that comes with

this book. Make certain you are logged in as user root with a password

of root . Follow these steps:

Images

VIDEO Please watch the Exercise 10-3 video for a demonstration on how

to perform this task.

 Use the cd /LABS/Chapter_10/work command. Use the ls

command to verify the file pure-ftpd-1.0.29.tar.gz exists in the

directory.

Images

NOTE There are two copies of the compressed file. One is in

/LABS/Chapter_10/work and the other in

/LABS/Chapter_10/source . Make certain you use the file in

/LABS/Chapter_10/work . The file in

/LABS/Chapter_10/source is a backup copy.

 Enter tar -zxvf pure-ftpd-1.0.29.tar.gz at the shell

prompt.

 Use the cd command to change to the directory created by tar . This

should be pure-ftpd-1.0.29 .

 Enter ls to view the files extracted from the tarball.

 Enter ./configure at the shell prompt. The configure script will

check your system and verify that the software can be installed. You must

have a C compiler installed on your system. If configure reports that

you’re missing a compiler, use the yum -y install gcc command

or yum -y groupinstall "Development Tools" to download

all the tools needed for proper software builds.

 When the configure script is done, compile the executable by entering

make at the shell prompt.

 When the compilation is complete, install the executable by entering make

install at the shell prompt.

 Start the service by entering /usr/local/sbin/pure-ftpd & at

the shell prompt.

 Test the system by entering ftp localhost at the shell prompt.

 When prompted, enter anonymous for a username. You should be logged

in to the FTP server at this point.

 Enter quit to close the connection.

At this point, you have a functioning FTP server running on your Linux

system!

Uninstalling Software Compiled from Source Code

Uninstalling software compiled from source code is very similar to the

installation process.

For most applications or services that are installed using the standard

build process we discussed earlier, you must (in most cases) have access to

your installation files to uninstall the associated software. The issue here is

that many Linux administrators delete the installation source files once the

installation process is complete to save disk space. If you do this, you’ve

just deleted the files you’ll need if you ever decide to uninstall the software.

I recommend that you create a protected directory in your filesystem

somewhere that only root can access and keep your source installation

files there. Yes, it does take up a little bit of disk space, but you’ll have the

files you need if uninstalling ever becomes necessary.

The uninstall process can vary slightly from product to product. Some

applications may include an uninstall script. If this is the case, execute this

script to uninstall the application from your system.

Other products may include an UNINSTALL target in their

Makefile file. If this is the case, first run ./ configure from the

original directory created when extracting the tarfile, just as you did when

you first installed the software. Then, instead of running make

install , run make uninstall . This causes the make utility to

follow the instructions in the UNINSTALL portion of the Makefile to

remove the software from your system. (As an extra project, try running

make uninstall to remove the Pure-FTPd service from your system

that you installed in Exercise 10-3.)

How do you know which method to use? The tarball you downloaded

should include a README file that documents both the install and uninstall

processes for the software. Check this file first. If the information isn’t

available, then check the FAQ or knowledge base on the website of the

organization that produced the software. One of these resources should

provide you with the steps you need to follow to uninstall the software.

Managing Shared Libraries

In addition to checking for software package dependencies, you may also

need to verify that your system is configured properly to access the libraries

for an application to run. In this section, you will learn how to do this. The

following topics are addressed:

 How shared libraries work

 Managing shared library dependencies

Let’s begin by discussing how shared libraries work.

How Shared Libraries Work

On Linux, applications running on the system can share code elements

called shared libraries. This is very useful. Shared libraries make it such

that software developers don’t have to reinvent the wheel each time they

write a new program.

If you think about it, many functions are commonly used across many

programs. For example, the process for opening a file, saving a file, and

closing an open file are the same no matter which application is being used.

Without shared libraries, programmers would have to include the code for

completing these basic tasks in every application they write. What a waste

of time and resources!

Instead, with shared libraries, software developers can focus on the code

elements that are unique to the individual application. For common

elements that are shared across applications, they can simply link to the

prewritten code in a shared library and not worry about rewriting the code.

Images

NOTE Shared libraries in Linux work in much the same manner as

dynamic link libraries (DLLs) on Windows systems.

Using shared libraries has many benefits. Obviously, it dramatically

speeds up development time. It also makes the programs being written

smaller and leaner.

There are two types of shared libraries on Linux:

 Dynamic Dynamic shared libraries exist as files in the Linux filesystem.

Programmers simply insert links to these functions in their program code.

The functions are called from dynamic libraries when the program runs.

Using dynamic shared libraries decreases the overall size of the executable;

however, they do create a dependency issue. If the program calls a function

from a library that isn’t installed or is unavailable, the application will fail.

 Static In contrast to dynamic shared libraries, static shared libraries are

linked statically into the program when it’s compiled. In essence, with static

libraries, the actual code elements for the functions called are integrated

directly into the application. Obviously, this results in larger applications.

However, it has the advantage of making the application independent of

having the library installed, unlike with dynamic libraries.

Which type is best? It depends on the application. Most applications use

dynamic libraries. This allows them to provide a lot of functionality with a

relatively small footprint on the hard drive. However, there are applications

that use static libraries, especially applications that are designed to help you

rescue a malfunctioning system. Instead of linking to dynamic shared

libraries, which may not be available in a system rescue scenario,

applications that use static libraries are completely self-contained and can

run in a minimal Linux environment.

Shared library files use a special naming format to help you identify the

type of shared library it is. This syntax is libname.type.version .

Notice that the filename of all shared libraries starts with lib . It is

followed by the name of the shared library. The type part of the filename

identifies the type of shared library: so indicates the file is a dynamic

shared library, whereas a indicates the file is a static library. The

version part of the filename specifies the version number of the library.

For example, libfreetype.so.6.4.0 is a dynamic shared library.

With this in mind, let’s discuss how you manage shared library

dependencies.

Managing Shared Library Dependencies

Linux uses a configuration file to tell applications running on the system

where they can find the dynamic shared library files on the system. Using

this type of configuration provides application developers with a degree of

independence. They don’t have to worry about where the shared libraries

will reside when their programs are run. They let the configuration file tell

the program where they are, wherever that happens to be on a particular

Linux system.

The dynamic shared library configuration file is /etc/ld.so.conf .

Here is a sample file:

Images

As you can see in this example, the file simply contains a list of paths in

the filesystem where shared library files are stored. Applications that are

linked to functions in these files will search through these paths to locate

the appropriate libraries.

To view a list of all shared libraries available on your Linux system,

enter ldconfig –p at the shell prompt. Here is an example:

Images

You can also view the shared libraries required by a specific application

using the ldd command. The syntax is ldd –v

<executable_filename> . For example, if you wanted to see what

shared libraries are required by the ip command, to manage network

connections, you would enter ldd –v /sbin/ip at the shell prompt:

Images

Images

NOTE You need to specify the full path to the executable along with the

executable’s filename with the ldd command.

One of the key uses for the ldd command is to check for shared library

dependencies. It determines whether all of the libraries required by the

application have been installed. If they have, you won’t see any error

messages, as shown in the preceding example. If a library file is missing, an

error message will be displayed. You can then locate and install the missing

library and all will be well with the world.

So, how does an application know which directories to look in when

trying to locate a shared library? The applications don’t actually check the

/etc/ld.so.conf file. Instead, they check the library cache and the

LD_LIBRARY_PATH environment variable. The library cache is

/etc/ld.so.cache . This file contains a list of all the system libraries

and is refreshed when the system is initially booted.

This is key. If you add a new dynamic library directory to the

/etc/ld.so.conf file, you’ll be very frustrated when you try to run

the applications that are linked to the libraries in this directory. That’s

because the library cache hasn’t been updated with the new information. To

fix this, you have two options:

 Use ldconfig The ldconfig command is used to rebuild the library

cache manually.

 Set LD_LIBRARY_PATH You can also add the path to the

LD_LIBRARY_PATH environment variable. You probably want to add

the new path to the end of the list of directories that may already exist in the

variable, so you should use the following commands:

Images

Generally speaking, using ldconfig is the preferred option. This

ensures the shared libraries are always available to the applications that

need them, even if the system is rebooted. I usually set the value of

LD_LIBRARY_PATH only in situations where I don’t have the root

password, or I have two versions of the same shared library installed in

different directories and I want to use one version over the other.

Exercise 10-4: Working with Shared Libraries

In this exercise, you will practice managing shared libraries. You can

perform this exercise using the virtual machine that comes with this book.

Images

VIDEO Please watch the Exercise 10-4 video for a demonstration on how

to perform this task.

Complete the following:

 With your system running, open a terminal session.

 If necessary, change to your root user account by entering su –

followed by your root user’s password.

 View the shared libraries used by the ping executable on your system by

entering ldd –v /bin/ping at the shell prompt. You should see that

ping requires the libc.so.6 shared library.

 Find the location of the libc.so.6 library file on your system by

entering find / –name libc.so.6 at the shell prompt. You should

see that the file resides in /lib64 .

 View your system’s library cache by entering ldconfig –p at the shell

prompt.

 Rebuild your library cache by entering ldconfig –v at the shell

prompt.

Chapter Review

The chapter began with a definition of terms used in package management.

Also you learned multiple methods of installing packages.

We first reviewed Red Hat Package Manager and went over RPM

commands to add, erase, and upgrade packages. You also learned to query

the RPM database to retrieve package information. Next, we reviewed the

capabilities of the YUM package manager. YUM is also able to add,

remove, and upgrade packages as well as search for and report package

information. You learned that YUM is being deprecated and is being

replaced by DNF. You saw that DNF uses different configuration files than

YUM, with the exception of /etc/yum.repos.d/ . You also learned

that many of the commands in YUM are duplicated in the DNF package.

You then learned that ZYpp is SUSE’s package manager and investigated

some of its command syntax.

To this point, all the package managers we investigated were front ends

to RPM. We then reviewed dpkg , the Debian Package Manager.

Tarfiles provide a method of installing and uninstalling files. We

reviewed how to create tarfiles, extract source code and applications from

tarfiles, and install a package from a tarfile. You can download tarfiles from

the Internet using wget or curl and add additional library search paths

to the LD_LIBRARY_PATH variable.

Finally, you learned about shared libraries and modules.

Here are some key facts to remember about managing Linux software:

 RPM packages are installed using the Red Hat Package Manager.

 RPM packages are compiled for a specific architecture and sometimes a

specific Linux distribution.

 You can enter rpm --checksig to verify the digital signature of an

RPM package before you install it.

 You can enter rpm -i to install a package file on your system.

 To uninstall an RPM package, use the rpm -e command.

 You can install or update a package using the rpm -U command.

 You can upgrade an existing package to a newer version using the rpm -

F command. If the older package doesn’t exist, no upgrade is performed.

 To query a package, use the -q option with rpm .

 To verify a package, use the -V option with rpm .

 The yum utility allows you to download and then install a package and all

its dependencies.

 The yum install <packagename> command installs a package on

Red Hat.

 The yum remove <packagename> command uninstalls a package.

 Repository information can be stored in the repository section of

/etc/yum.conf or in the directory /etc/yum.repos.d/ .

 DNF is an upgrade and eventual replacement of YUM.

 The dnf install <packagename> command installs a package on

Red Hat.

 The dnf remove <packagename> command uninstalls a package.

 The zypper install <packagename> command installs a

package on SUSE.

 The zypper remove <packagename> command uninstalls a

package.

 The pacman -S <packagename> installs a package on Arch Linux.

 The pacman -R <packagename> removes a package.

 Flatpak, Snap, and AppImage are universal packaging systems for Linux.

 To install from source code, first download and extract a tarball file; for

example, with wget or curl .

 To download gnuchess using wget , run wget

https://ftp.gnu.org/gnu/chess/gnuchess-

6.2.9.tar.bz2

 To download the emacs editor using curl , run curl -o

emacs.tgz https://ftp.gnu.org/gnu/emacs-

28.1.tar.gz

 In the installation directory, run configure , make , and make

install .

 The configure command checks your system to verify compatibility

and creates the Makefile file.

 The make command compiles a binary executable from the source code

text using the specifications in the Makefile file.

 The make install command installs files to /usr/bin/ ,

/usr/lib/ , and /usr/man/ .

 The make uninstall command is typically used to uninstall an

executable installed from source.

 Distributions based on the Debian distribution use dpkg , the Debian

Package Manager.

 Debian packages include dependency information.

 You use the dpkg command to install, uninstall, query, and verify Debian

packages.

 The apt-cache command is used to query package information from

the Debian package database.

 The apt command automatically downloads and installs packages (along

with all dependent packages) for you.

 Run apt update before running apt upgrade to assure you’re

getting the latest software on a Debian system.

 Run zypper refresh then zypper update to install the latest

applications on a SUSE-based system.

 Applications running on a Linux system can share code elements called

shared libraries.

 Linux applications can use either dynamic or static shared libraries.

 The dynamic shared library configuration file is /etc/ld.so.conf .

 The /etc/ld.so.conf file contains a list of paths in the filesystem

where shared library files are stored.

 To view a list of the shared libraries available on a Linux system, enter

ldconfig -p at the shell prompt.

 You can view libraries required by a specific application with ldd -v

<command> .

 The library cache is /etc/ld.so.cache .

 The ld.so.cache file contains a list of all the system libraries and is

refreshed when the system is initially booted.

 If you add library files to a directory not listed in the

/etc/ld.so.conf file, you must use the ldconfig command to

rebuild the library cache manually.

 You can also add a new library file path to the LD_LIBRARY_PATH

environment variable.

Questions

 You’ve just downloaded a file named FC-6-i386-DVD.iso to the

/home/tux/ directory on your Linux system. Which two commands

were most likely used to download this file? (Choose two.)

 wget

upload

 curl

 download

 After running apt upgrade on Ubuntu, you get an error. Which

command or commands should you run next?

 dpkg update , then dpkg upgrade

./configure update

 apt update , then apt upgrade again

 zypper update , then apt upgrade again

 You’ve just downloaded a file named BitTorrent-7.10.1.tar.gz

to your home directory. Assuming the current directory is ~ , what

command would you enter at the shell prompt to extract all the files from

this archive?

 gzip -d ./BitTorrent-7.10.1.tar.gz

tar -axvf ./BitTorrent-7.10.1.tar.gz

 tar -xvf ./BitTorrent-7.10.1.tar.gz

 tar -zxvf ./BitTorrent-7.10.1.tar.gz

 Where does RPM store its database of installed packages?

 /var/lib/rpm

/etc/rpm

 /var/rpmdb

 /tmp/rpm

 You’ve just downloaded an RPM package file named evolution-

2.6.0-41.i586.rpm to your home directory. Assuming the current

directory is ~ , what command could you use to check the digital signature

of the downloaded file to verify that it hasn’t been tampered with?

 rpm --checksig evolution-2.6.0-41.i586.rpm

rpm --verify evolution-2.6.0-41.i586.rpm

 rpm -tamperproof evolution-2.6.0-41.i586.rpm

 rpm --signature evolution-2.6.0-41.i586.rpm

 You’ve just downloaded an RPM package file named evolution-

2.6.0-41.i586.rpm to your home directory. Assuming the current

directory is ~ , what command could you use to install the package on your

system, displaying a progress indicator as the installation is completed?

(Choose two.)

 rpm -i evolution-2.6.0-41.i586.rpm

rpm -ihv evolution-2.6.0-41.i586.rpm

 rpm -U evolution-2.6.0-41.i586.rpm

 rpm -install --progress evolution-2.6.0-

41.i586.rpm

rpm --Uhv evolution-2.6.0-41.i586.rpm

 You need to uninstall the pure-ftpd service from your Linux system.

You’ve switched to the directory where the original installation files are

located. What’s the first command to enter to uninstall this package?

 ./configure

make

 make remove

 make uninstall

 You’ve installed an RPM package file named evolution-2.6.0-

41.i586.rpm on your Linux system. What command would you use to

uninstall this package?

 rpm -U evolution

rpm -U --remove evolution

 rpm -i --remove evolution

 rpm -e evolution

 You currently have an RPM package file named evolution-2.2.0-

2.i586.rpm installed on your Linux system. You’ve recently

downloaded the evolution-2.6.0-41.i586.rpm package from

www.sourceforge.net. What command would you use to install the newer

version of this package? (Choose two.)

 rpm -U evolution-2.6.0-41.i586.rpm

rpm -i evolution-2.6.0-41.i586.rpm

 rpm -i --upgrade evolution-2.6.0-41.i586.rpm

 rpm -e evolution-2.2.0-2.i586.rpm

rpm -F evolution-2.6.0-41.i586.rpm

 You currently have an RPM package file named evolution-2.6.0-

41.i586.rpm installed on your Linux system. What command would

you enter to display summary information about the package?

 rpm -s evolution

rpm -qs evolution

 rpm -qi evolution

 rpm -V --summary evolution

http://www.sourceforge.net/

 You’ve used the rpm command with the -q --requires option to

determine the components required by the RPM package. One of the

required components is /usr/bin/perl . What command would you

enter to find out which RPM package provides this component?

 rpm -q --whatprovides /usr/bin/perl

rpm -qs --requires /usr/bin/perl

 rpm -qi --requires /usr/bin/perl

 rpm -q --provides perl

 You’ve used the rpm command with the -V option to verify an RPM

package installed on your system. The output from the command listed the

following error code:

Images

What does this error code indicate? (Choose three.)

 There’s a problem with the size of the file.

There’s a problem with the mode of the file.

 There’s a problem with the timestamp of the file.

 There’s a problem with the checksum.

There’s a problem with a file’s ownership.

 You need to extract a single file out of an RPM package. Which utility can

be used to do this?

 tar

rpm

 dpkg

 rpm2cpio

 You need to install the GNU C Compiler (gcc) package on your system.

Which command will do this? (Choose two.)

 yum gcc

yum install gcc

 dnf install gcc

 dnf installpkg gcc

 Which command generates a list of available updates for all installed

packages on a Linux system?

 yum list updates

yum info

 dnf list available

 dnf list all

 What does the configure script do in an application’s installation

directory? (Choose two.)

 It compiles the source code into a binary executable.

It checks the local system to verify that the necessary components are

available.

 It copies the binary executable and other files, such as documentation, to the

appropriate directories in the filesystem.

 It creates the Makefile file.

It verifies that the installation files haven’t been corrupted or tampered with.

 What does the make command do when installing an application from

source code?

 It compiles the source code into a binary executable.

It checks the local system to verify that the necessary components are

available.

 It copies the binary executable and other files, such as documentation, to the

appropriate directories in the filesystem.

 It creates the Makefile file.

 What does the make install command do when installing an

application from source code?

 It compiles the source code into a binary executable.

It checks the local system to verify that the necessary components are

available.

 It copies the binary executable and other files, such as documentation, to the

appropriate directories in the filesystem.

 It creates the Makefile file.

 Which action, when used with the dpkg command, uninstalls a specified

package and deletes all its configuration files?

 -r

-p

 -P

 -U

 You want to use apt to download and install the 3dchess package on

your Linux system. Which command can you use to do this?

 apt install 3dchess

apt -d install 3dchess

 apt upgrade 3dchess

 apt -s install 3dchess

 Which type of shared library is integrated directly into an executable file

when it is initially compiled?

 Dynamic

Shared

 Static

 Linked

 Which file is checked by applications on startup for the location of shared

libraries on the Linux system?

 /etc/ld.so.conf

/etc/ld.so.cache

 /lib/ld.so

 /usr/lib/ld.so

 Which variable is updated to supply additional shared libraries for a

standard user?

 LIBRARY_PATH

LD_LIBRARY_PATH

 LDD_LIBRARY_PATH

 ld_library_path

Answers

 A, C. The upload and download commands are not Linux

commands.

 C. The error occurred because the latest repositories were not being used on

this Debian-class system, so run apt update , then apt upgrade .

You would use dpkg -i to upgrade a package on Debian. Running

./configure is used to prepare a source code installation. The

zypper command only works on SUSE-class systems.

 D. To extract the file, you would enter tar -zxvf ./BitTorrent-

7.10.1.tar.gz . Using gzip would just uncompress the file. The -

a option is used to determine the compression program. Running tar -

xvf would unsuccessfully attempt to untar a compressed file.

 A. The RPM database is stored in /var/lib/rpm .

 A. The rpm --checksig evolution-2.6.0-41.i586.rpm

command would be used to check the file’s digital signature.

 B, E. Either the rpm -ihv evolution-2.6.0-41.i586.rpm

command or the rpm -Uhv evolution-2.6.0-41.i586.rpm

command will install the file and display a progress indicator composed of

hash marks on the screen as the installation progresses.

 A. The ./configure command would be used first to generate the

Makefile file. The configure file contains the UNINSTALL target

that can then be used with the make utility to uninstall the software.

 D. To erase rpm from the system, you would enter rpm -e

evolution .

 A, E. The rpm -U evolution-2.6.0-41.i586.rpm command

will upgrade the existing RPM to the newer version, or install it if the older

version is not installed. The rpm -F evolution-2.6.0-

41.i586.rpm command will also upgrade the existing RPM to the

newer version because the older version is installed. If the older version

were not installed, no upgrade would occur using -F .

 C. The rpm -qi evolution-2.6.0-41.i586.rpm command will

query the package and display summary information on the screen.

 A. The rpm -q --whatprovides /usr/bin/perl command

displays the name of the package that provides this component.

 A, C, D. The S , 5 , and T in the error code indicate that there is a

problem with the file’s size, MD5 checksum, and timestamp. The c

indicates that the file is a configuration file, so these errors may or may not

be significant.

 D. The rpm2cpio utility can be used to create a cpio archive file from

the RPM package. You can then extract individual files from the archive

using the cpio utility.

 B, C. The yum install gcc command or dnf install gcc

command can be used to download and install the gcc package on your

Linux system, including all packages it is dependent on.

 A. The yum list updates command can be used to generate a list of

available updates for all installed packages on a Linux system.

 B, D. The configure script is used to check the local system to make

sure it has the components required to install and run the software. It also

creates the Makefile file.

 A. The make command compiles the text-based source code into a binary

executable that can be run on the system.

 C. The make install command installs the program and its associated

support files (such as documentation and configuration files) into the

appropriate directories in the filesystem.

 C. The -P option, when used with the dpkg command, uninstalls a

specified package and deletes all its configuration files.

 A. The apt install 3dchess command can be used to download

and install the 3dchess package on your Linux system, along with all

other packages it is dependent on.

 C. Static shared libraries are integrated directly into an executable file when

it is initially compiled.

 B. The /etc/ld.so.cache file is checked by applications on startup

for the location of shared libraries on the Linux system.

 B. The LD_LIBRARY_PATH file is used to update the supply of

additional shared libraries for a standard user.

CHAPTER 11
Managing the Linux Boot Process

In this chapter, you will learn about

 The BIOS power-on self-test phase

 The GRUB2 bootloader phase

 The kernel initialization phase

 The System V initialization phase

 The systemd initialization phase

You can’t be a leader if you turn around and there’s no one there.

—April Walker, Microsoft

When you power on your Linux system, it goes through four major steps to

start processes and display the login screen:

 The BIOS power-on self-test (POST) phase

 The GRUB2 bootloader phase

 The kernel initialization phase

 The systemd initialization phase (formerly System V initialization)

Figure 11-1 illustrates the boot process after powering on the Linux

system. Boot-specific messages are written to /var/log/boot.log .

The systemd command journalctl -b will display boot messages

from your last boot, but may also be configured to store boot logs from

previous boots by creating the /var/log/journal/ directory as

root .

Images

Figure 11-1 System boot process

The BIOS POST Phase

After turning on the computer, the system firmware initializes. The system

first runs the power-on self-test (POST) to ensure that the memory is good

and that there is enough to load the kernel. The system also verifies that the

keyboard, graphics, and other components are available and initialized.

Next, the system searches for the location of instructions responsible for

loading the operating system, whether it is from a hard drive, network, or

even USB thumb drive.

You should be familiar with the following bootstrap methods:

 The classic BIOS

 The modern UEFI

The Classic BIOS

The BIOS, or basic input/output system, is the traditional bootstrap program

stored on a flash memory chip on the system motherboard. Once power has

been applied, the BIOS initializes the motherboard POST. If the POST

encounters any problems, it either displays an error message onscreen or

plays a series of beeps. The website http://www.bioscentral.com has a

listing for most motherboard POST error codes.

Once the POST is complete, the BIOS looks through the list of devices

for bootloader code. You can manipulate the order in which this list is

searched by entering the BIOS. Figure 11-2 shows a system configured to

search for removable devices and then a list of hard drives. Figure 11-3

shows the same system configured to search the network for a bootable

image and then look at local removable drives, followed by local hard

drives.

Images

Figure 11-2 Selecting a boot device

Images

http://www.bioscentral.com/

Figure 11-3 Selecting a removeable or network boot device

When searching these devices, the BIOS searches for the master boot

record (MBR). For example, when booting from a hard drive, the BIOS

looks in the first sector of the disk device, also known as the boot sector, or

MBR, illustrated in Figure 11-4.

Images

Figure 11-4 The master boot record (MBR) details

The MBR is divided into three sections. The first 446 bytes of the MBR

contain the first stage of the master boot code. The master boot code

contains error messages (such as “missing operating system”) and the code

required for loading the second stage of the bootloader, called GRUB2. The

next 64 bytes contain the drive’s partition table, and the last 2 bytes contain

a disk signature. The disk signature identifies the device that contains the

/boot directory, which contains files required by the boot process.

Once the BIOS has begun loading the bootloader, control of the boot

process is turned over to the GRUB2 bootloader.

PXE

PXE (pronounced pixie), or Preboot Execution Environment, is an OS-

neutral client/server facility that can be used to remotely boot operating

systems or provision computer systems from a network server. PXE

requires the client system have a network card that supports PXE and has

PXE enabled as a boot device in flash memory.

When power is applied to a PXE client, the enabled NIC card “looks” for

a DHCP server by broadcasting a series of DHCP discover packets, which

are requests from the client to obtain an IP address from a DHCP server.

The Dynamic Host Configuration Protocol (DHCP) server is used to

automatically assign an IP address to the client and provide the client with

the location of one or more Trivial File Transfer Protocol (TFTP) servers.

The Modern UEFI

The BIOS did not keep pace with advancements in technology. It was

limited to 16-bit addressing, could only access 1MB of memory, could not

boot from drives larger than 2.1TB, and could manage only a limited

number of devices.

The Unified Extensible Firmware Interface (UEFI) is an OS-neutral,

architecture-independent software interface between firmware and the

operating system designed to overcome the limitations of the BIOS. One of

the UEFI’s most important features is its ability to execute applications

prior to the operating system loading.

Some features of UEFI include the following:

 It provides a user interface prior to the operating system being available.

 It operates in 32- or 64-bit mode.

 It has access to all system memory and devices.

 It can mount partitions and read some filesystems (FAT12, FAT16, FAT32,

and VFAT).

 It has network capabilities without the OS being loaded.

 It can boot drives larger than 2.1TB.

 It enables you to add applications that can be executed as part of the boot

process or from the UEFI command shell.

 It supports remote diagnostics and storage backup.

 It can be configured via the OS using the command efibootmgr .

Images

NOTE If UEFI is implemented, the directory /sys/firmware/efi/

will exist and the command efibootmgr should be available.

The UEFI controls the boot process using UEFI boot services. While the

operating system is running, the UEFI provides a connection between the

OS and firmware.

After hardware initialization, the UEFI looks for a storage device with an

EFI system partition (ESP). This partition is a FAT32 partition that contains

the bootloader code, applications, and device drivers. The partition is

normally mounted on /boot/efi/ . Applications contained here can be

part of the boot process or utilities that can be chosen by the user at boot

time.

Vendor-specific applications or EFI utilities are stored in the

/boot/efi/ directory. For example, Red Hat EFI files are stored in

/boot/efi/EFI/redhat/ , and CentOS stores its bootloader

information in /boot/efi/EFI/centos/ . If multiple operating

systems are available, each has its own directory in /boot/efi/ .

Depending on the contents of the ESP, several things could happen. You

could be prompted to execute a UEFI application or load a specific

operating system, or the UEFI could automatically load another bootloader,

such as GRUB2.

The GRUB2 Bootloader Phase

Once the BIOS POST phase has completed, the bootloader is used to load

the Linux kernel. Although multiple bootloaders are available, we will

confine our discussion to what is tested on the CompTIA Linux+ exam, the

Grand Unified Bootloader version 2 (GRUB2). In this section you will

learn how to

 Modify the GRUB2 bootloader

 Change a forgotten root password

Modify the GRUB2 Bootloader

As its name indicates, GRUB2 is a newer version of the original GRUB

bootloader. GRUB2 works in a completely different manner than the

original GRUB Legacy bootloader. GRUB version 1.98 or later is

considered “GRUB2.” Any version of GRUB earlier than 1.98 is

considered “GRUB Legacy.” You can run one of two commands, as

root , at the shell prompt to see which version of GRUB your Linux

system is using:

 grub-install -V

 grub2-install -V

An example is shown here:

Images

One important difference between Legacy GRUB and GRUB2 is device

names. Whereas Legacy GRUB started device numbering at 0, GRUB2

starts numbering at 1.

Table 11-1 lists the configuration files and directory used by GRUB2.

Images

Table 11-1 GRUB2 Configuration Files

Images

EXAM TIP Running grub2-install /dev/sda reinstalls GRUB2

configuration files into /boot/grub2/ onto the first hard drive.

Variables in /etc/default/grub

The file /etc/default/grub contains GRUB configuration variables,

as detailed in Table 11-2. The settings in this file are used to build the

/boot/grub2/grub.cfg file when built with grub2-mkconfig .

Images

Table 11-2 GRUB2 /etc/default/grub Variables

Files in the /etc/grub.d/ Directory

The directory /etc/grub.d/ contains scripts used to build the

/boot/grub2/grub.cfg file when built with grub2-mkconfig

(see Figure 11-5). Scripts are processed in order of their script number.

Table 11-3 describes some of those scripts.

Images

Figure 11-5 Files in /etc/grub.d/

Images

Table 11-3 Grub Script Files in /etc/grub.d/

Interactive Booting Options

You can press Esc to interrupt the boot process. This allows you to boot a

different operating system, or even enter emergency mode for

troubleshooting, using the keys detailed in Table 11-4.

Images

Table 11-4 Interactive Boot Control Keys

Changing GRUB2 Boot Operations

To make changes to GRUB2’s configuration, you can modify the file

/etc/default/grub or change the 40_custom script in

/etc/grub.d/ . If you make changes to these files, you must execute

the command grub2-mkconfig -o <config_filename> . After

making a backup of /boot/grub2/grub.cfg , to update grub.cfg

run the command grub2-mkconfig -o

/boot/grub2/grub.cfg , or update-grub2 .

To change update-grub2 to grub2-update , use the ln

command as follows:

Images

This allows a consistent method of running GRU2 commands, since most

of them start with grub2- .

Change a Forgotten root Password

Occasionally, you might forget the root password, or one of your co-

workers might depart your organization unexpectedly and not leave the

password. To recover a forgotten or lost password, perform the following

steps on Red Hat Linux:

 Power on the computer and press Esc when the GRUB2 menu appears as

shown in Figure 11-6.

Images

Figure 11-6 GRUB2 boot menu

 Press e to edit the default Linux option, as shown in Figure 11-6. This

allows you to access the GRUB2 boot script.

 Find the ro option (read-only) in the linux or linux16 line and

change that to rw init=/sysroot/bin/sh , as shown in Figure 11-

7.

Images

Figure 11-7 Altering GRUB boot script to access shell mode

 Press Ctrl-x to start the system into shell mode, which is similar to

emergency mode but will not ask you for the root password.

 Run the following sequence of commands to change the root password, as

shown in Figure 11-8:

Images

Figure 11-8 Changing the root user password

Images

 Reboot the system.

After rebooting you will be able to log in as root with your new

password. My students are always surprised to discover how simple this is.

For better security, also set a BIOS/UEFI password or a GRUB2 password

(discussed later in this chapter). Finally, physical security, such as keeping

the system in a secure environment, mitigates password attacks.

Images

EXAM TIP Another way to boot into single-user mode is to modify the

linux64 or linux GRUB2 setting by adding

systemd.boot=rescue.target .

Exercise 11-1: Working with GRUB2

In this exercise, practice customizing your GRUB2 menu. You can perform

this exercise using the virtual machine.

Images

VIDEO Please watch the Exercise 11-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot your Linux system and log in as user root using the password

root .

 Create a snapshot.

 Enter vi /etc/default/grub at the shell prompt.

 Change the GRUB_TIMEOUT value to 15 seconds.

 Change the GRUB_DEFAULT parameter to automatically load the first

menu entry if the user makes no selection within the timeout period.

 Save your changes and exit the vi editor.

 Make a copy of /boot/grub2/grub.cfg using the following

command:

cp boot/grub2/grub.cfg /boot/grub2/grub.cfg.$(date

+%m%d).old

 Execute the following command to create a new configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg.$(date

+%m%d).new

 Copy the new file to /boot/grub.cfg using the following command:

cp /boot/grub2/grub.cfg.$(date +%m%d).new

/boot/grub2.cfg

 Reboot your system and verify the changes have been applied to the

bootloader.

The Kernel Initiation Phase

The purpose of the bootloader is to load the system kernel, vmlinux , and

start the initial RAM disk, initrd , or the initial RAM filesystem,

initramfs . GRUB2 loads the compressed Linux kernel named

vmlinuz , then the kernel decompresses and mounts initrd or

initramfs .

This RAM disk is a temporary filesystem that contains kernel modules

and applications necessary to access the devices and filesystems required to

boot the operating system. For example, the mount command is included

so that the system hard drive can be mounted.

Images

NOTE The initrd.img and initramfs.img files are created

from mkinitrd , which uses dracut to generate the RAM disk files.

The initrd.img and initrd files are the same file, just different

names.

The kernel first initializes memory and then configures the attached

hardware by using drivers found in initrd . When all device drivers are

loaded, the kernel mounts the root filesystem in read-write mode and begins

operating system initialization.

System V Initialization

System V was fine in its day, but systemd provides performance and

security features that render System V relatively obsolete. System V is still

discussed here for purposes of understanding certain systemd concepts.

Once the kernel is running, initrd is unmounted and the init

process starts the system scheduler with a process ID (PID) of zero (0).

The init process is the last step of the boot process.

The init process executes the command /sbin/init , which

becomes the grandparent of all other processes running on the system. Its

process ID is always one (1). /sbin/init reads a file called

/etc/inittab . This configuration file brings the operating system to a

predefined runlevel.

In this section you will learn about

 The Linux runlevels

 The inittab startup file

 Shutting down the system

The Linux Runlevels

A runlevel defines what services and resources are available at different

boot runlevels. Most user environments run a secured version of runlevel 5

so that users can work and do research with a web browser.

Many security operation centers (SOCs) run a secured version of

runlevel 3, which is a command-line–only server. Table 11-5 describes the

seven runlevels.

Images

Table 11-5 System V Runlevels

The inittab Startup File

The command /sbin/init uses the configuration file

/etc/inittab to initialize the system. Configuration lines in

/etc/inittab have the following format:

Images

On line 21 in Figure 11-9, you can see the line ID is si . Since no

runlevel numbers are assigned, this line will be executed for all runlevels.

The action is sysinit , and the command will execute the script

/etc/rc.d/rc.sysinit .

Images

Figure 11-9 An excerpt from /etc/inittab showing the default

runlevel

Line 18 of Figure 11-9 specifies the default runlevel. In this example, the

operating system will boot to runlevel 5 . To change the default runlevel,

change the number in this line with an editor when running System V.

Images

NOTE Use the init command or telinit command to change

runlevels. For example, init 2 switches the system to runlevel 2. The

runlevel command shows the previous and current runlevels. #

runlevel 3 5

Shutting Down the System

As with any other operating system, you need to shut down a Linux system

properly. This ensures any pending disk write operations are committed to

disk before the system is powered off.

You can use several commands to properly shut down a Linux system,

including the following:

 init 0 Switches the system to runlevel 0 , which halts the system

 init 6 Switches the system to runlevel 6 , which reboots the system

 halt Shuts down the system

 reboot Reboots the system

In addition to these commands, you can also use the shutdown

command to either shut down or reboot the system. It has several key

advantages over the preceding commands:

 You can specify that the system go down after a specified period of time.

This gives your users time to save their work and log out before the system

goes down. It also allows you to shut down the system at a specified time

even if you’re not there to do it.

 It allows you to send a message to all logged-in users warning them that a

shutdown is pending.

 It does not allow other users to log in before the pending shutdown.

The syntax for using shutdown is shutdown +m -h|-r

<message> . The +m option specifies the amount of time (in minutes)

before shutting down the system. You can also use the now option instead

of +m to specify that the system go down immediately. If you need the

system to go down at a specific time, you can replace +m with the time

(entered as hh:mm) when the shutdown should occur. The -h option

specifies that the system be halted, whereas the -r option specifies that

the system be rebooted. Some examples of using shutdown are shown

here:

Images

When you enter this command, all other logged-in users see the

following message:

Images

If you’ve scheduled a shutdown using the shutdown command and

later need to cancel that shutdown, enter shutdown -c at the shell

prompt.

You can also use the wall command to send messages to users to

inform them of system events, such as a system reboot or a runlevel change.

To use wall , you must send the message to the stdin of the wall

command. An example is shown here:

Images

The systemd Initialization Phase

The traditional init process starts services one at a time in sequential

fashion. systemd is a system and service manager created by Red Hat

developers Lennart Poettering and Kay Sievers. systemd uses compiled

startup programs instead of scripts, so it boots up much faster than System

V–based systems. Also, systemd takes advantage of security features

such as universally unique identifiers (UUIDs) and trusted platform

modules (TPMs) for improved integrity and confidentiality.

systemd Unit Files

The main configuration file for systemd services is called a unit. Default

units are found in /usr/lib/systemd/system/ . Modified and

custom units are contained in /etc/systemd/system/ . Unit files in

/etc/systemd/system/ override the entries in

/usr/lib/systemd/system/ .

The command systemctl -t help , shown here, displays a list of

available units.

Images

The command systemctl list-units --type=

<unit_type> displays all active units of a specific type. The edited

output in the following illustration shows the results of the command

systemctl list-units –-type=mount , which displays all

active units of type mount . Adding the --all option, systemctl

list-units --type=mount --all displays both active and

available units of type mount .

Images

A unit file consists of stanzas that contain configuration directives. The

contents of the vsftpd.service unit file are shown next. The

[Unit] stanza summarizes the service and specifies which stage is called

next. The [Service] stanza describes how the service should start and

which application to initiate. The [Install] stanza describes which run

state makes the unit begin.

Images

Images

NOTE Daemon names usually end in the letter d . The unit type for

daemons is service .

The [Unit] stanza is found in all unit configuration files. It contains a

description of the unit and generic unit options. Some [Unit] stanza

options are explained in Table 11-6.

Images

Table 11-6 [Unit] Stanza Directives

The [Service] stanza contains configuration information only found

in units of type service . Other unit types may have different sections.

For example, a mount unit contains a mount section. Table 11-7

contains a few [Service] stanza directives.

Images

Table 11-7 [Service] Stanza Directives

Operating parameters for a specific unit may be viewed by executing the

command systemctl show <unit_name> .

The [Install] stanza, detailed in Table 11-8, contains directives

associated with the activation of the unit. Since you are starting the

vsftpd networking service, you need to boot in at least multi-

user.target . This target will start networking services.

Images

Table 11-8 [Install] Stanza Directives

Mount Unit Naming Conventions

Mount points controlled by systemd are configured under the

systemd.mount protocol. The [Mount] stanza, detailed in Table 11-

9, contains directives associated with the activation of the unit. Mount units

may also be configured via /etc/fstab , or can be converted to mount

units. Mount units can include [Unit] and [Install] stanzas.

Images

Table 11-9 [Mount] Stanza Directives

Bootup Dependencies

To display a list of units that a unit is dependent on, execute the command

systemctl list-dependencies <unit_name> . To display a

list of units that are dependent on a unit, execute the command

systemctl list-dependencies --reverse <unit_name> .

The output of these commands will be a tree-like structure that lists the

units that apply. The left margin will contain a green dot if the unit is active

and a red dot if inactive.

Viewing Unit Status

The command systemctl status <unit_name> displays the

operational status of a unit. Figure 11-10 shows the output of the command

systemctl status cups.service .

Images

Figure 11-10 The results of the systemctl status

cups.service command

Table 11-10 defines some terms provided in the output.

Images

Table 11-10 Unit Status Definitions

Failed Units

To list all failed units, execute the command systemctl --failed .

To list all failed units of a specific type, execute the command

systemctl --failed --type=<unit_type> .

Service Procedures

You may control services using the syntax systemctl <command>

<unit> . For example, to start the Apache web server on a Red Hat–class

Linux system, run systemctl httpd start . To shut down the SSH

server, run systemctl stop sshd . Table 11-11 provides a list of

control commands.

Images

Table 11-11 Controlling Services

Targets

A unit defines a specific service. A target is a grouping of units and/or other

targets to provide a specific function. For example, the target network-

online.target waits for a network to be “up” before network-related

services start. A target name is suffixed by .target . The command

systemctl --type=target lists all active targets. The command

systemctl --type=target -all lists all available targets.

The first target for systemd is default.target . The file

/etc/systemd/system/default.target is linked to the default

runlevel target file. You may also execute the command systemctl

get-default to display the default runlevel. Table 11-12 displays the

systemd runlevels and their System V equivalents.

Images

Table 11-12 The systemd Runlevels

To view the current runlevel, execute the command systemctl

get-default . To change the default runlevel, type systemctl

set-default <runlevel_target> . To change the current

runlevel, type the command systemctl isolate

<runlevel_target> . Note that isolate is used when switching

runlevels to stop anything that is not part of the new runlevel.

Troubleshooting Services Not Starting on Time

Understanding the boot process is very important if you have boot issues

with a system. Error messages can give you some idea of where the fault

occurs. Review Table 11-13 for a list of errors and where to start looking for

the fault.

Images

Table 11-13 Booting Troubleshooting

Kernel Panic

A kernel panic, also called a kernel oops, is a protective measure generated

by the kernel to prevent the risk of data loss or corruption when the kernel

detects an unrecoverable error. Panics occur due to configuration or

software problems; missing, misconfigured, or failed hardware or hardware

drivers; or system resource problems. System utilities kexec , kdump ,

and crash are used to store and troubleshoot a kernel panic. These tools

may be installed during system installation or at a later time.

When a kernel panic occurs, the kdump utility, by default, saves the

crash dump to memory. kdump may store the dump data on a remote

machine.

kdump requires system memory reserved specifically for storing kernel

crash information. The memory is reserved during the boot process via the

crashkernel directive on the GRUB command line. The amount of

memory reserved is dependent on the type of hardware and the total amount

of system memory. You may also adjust this setting to allocate the correct

amount of memory automatically.

The kexec utility boots the kernel from another kernel but does not

use the BIOS. This preserves the current system state so you may analyze

the crash dump data using the crash command.

Chapter Review

In this chapter, you learned about the boot process. The bootstrap phase is

used to initialize system hardware, and we explored the difference between

the BIOS, UEFI, and PXE bootstraps. We then explored the configuration

of the GRUB2 bootloader. You learned how to configure the bootloader and

use it in interactive mode. We continued the boot process by discussing how

the kernel and root filesystem are loaded. Finally, we reviewed both the

System V and systemd initialization processes as well as how to control

services.

 In the bootstrap phase, the computer’s BIOS chip has control of the system.

 The BIOS tests the system hardware using the power-on self-test (POST)

routine and then locates a storage device with boot files on it.

 The BIOS turns over control of the system to a bootloader.

 The bootloader points to and loads a temporary kernel.

 The first stage of a BIOS bootloader resides in the master boot record

(MBR) of the boot device or in the boot partition on the drive.

 The Linux kernel is located in /boot and is named vmlinuz-

version.gz or vmlinux .

 /boot is the root directory for GRUB2.

 You can add an encrypted password to your GRUB2 menu to restrict

access.

 The configuration files used by GRUB2 are as follows:

 The /boot/grub/grub.cfg file

 The files in the /etc/grub.d directory

 The /etc/default/grub file

 With GRUB2, the menu.lst file has been replaced by the

/boot/grub2/grub.cfg file.

 The GRUB2 configuration is stored in several script files in the

/etc/grub.d directory.

 After making a change to the GRUB2 configuration, you must run the

command grub2-mkconfig -o <output_file> .

 Linux defines seven runlevels (0–6):

 0 Halts the system.

 1 Runs Linux in single-user mode.

 2 Runs Linux in multiuser mode as a networked client in command-line

interface only.

 3 Runs Linux in multiuser mode as a network server in command-line only.

 4 Unused.

 5 Runs Linux in multiuser mode as a network server. The graphical user

interface is used.

 6 Reboots the system.

 Most Linux distributions today have migrated away from init to

systemd .

 The systemd daemon uses the concept of targets, which function in a

way similar to runlevels.

 The traditional init runlevels are shown here with their equivalent

systemd boot target files:

 runlevel 3 = multi-user.target or runlevel3.target

 runlevel 5 = graphical.target or runlevel5.target

 On a system that uses systemd , you use the systemctl command to

manage services and boot targets.

Questions

 What is the role of the BIOS during system boot? (Choose two.)

 It tests system hardware.

It creates an initrd image in a RAM disk.

 It locates a bootable storage device.

 It provides a menu that lets you choose which operating system to boot.

It points to your operating system kernel.

 Where can your Linux bootloader reside? (Choose two.)

 In the BIOS

In an initrd image

 In the MBR of a storage device

 In the bootable partition

In the system chipset

 Where does the Linux kernel reside?

 In /boot

In the MBR

 In /proc

 In /kernel

 You want to install GRUB2 into the first partition on the first SATA hard

disk drive of your system. Which shell command will do this?

 grub /dev/sda1

grub2-install /dev/sda1

 grub-install /dev/sda

 grub /dev/hda1

 Which command will start the Apache web server on a Red Hat–class

Linux system?

 systemctl start httpd

systemctl start apache

 systemctl start apache2

 systemctl start apachev2

 Which of the following configuration files is not used by the GRUB2

bootloader?

 /boot/grub/grub.cfg

/etc/grub.d

 /etc/default/grub

 /boot/grub/menu.lst

 Which GRUB2 configuration script file can detect a Windows installation

on the same hard disk as Linux?

 00_header

10_linux

 30_os_prober

 40_custom

 Which configuration parameter in /etc/default/grub specifies how

long the user has to make a menu selection from the GRUB menu before

the default operating system is booted?

 GRUB_TIMEOUT

GRUB_DEFAULT

 GRUB_SAVED DEFAULT

 GRUB_HIDDEN_TIMEOUT

 Which runlevel uses a graphical user interface by default?

 2

3

 4

 5

 Which runlevels use a command-line user interface by default? (Choose

two.)

 0

2

 3

 5

4

 Which file is used to set the default runlevel of a Linux system that uses the

init daemon?

 /etc/inittab

/etc/runlevel.conf

 /etc/init.conf

 /etc/sysconfig/init

 Which command can be used to switch runlevels while the system is

running?

 runlevel

chrun

 mode

 init

 Your Linux system uses systemd instead of init . You need to switch

the system into runlevel 3. Which command should you use?

 systemctl isolate graphical.target

systemctl isolate multi-user.target

 systemctl isolate runlevel5.target

 systemctl isolate nongraphical.target

Answers

 A, C. The BIOS tests your system hardware during the POST routine and

then locates a bootable storage device.

 C, D. The Linux bootloader can be stored in the MBR of the storage device

and in the bootable partition on the disk.

 A. The Linux kernel resides in /boot in the filesystem.

 B. The grub2-install /dev/sda1 command will install GRUB2

into the first partition on the first hard disk drive.

 A. To start the Apache web server on a Red Hat–class system, run

systemctl start httpd . On Debian-class systems, run

systemctl start apache2 .

 D. The /boot/grub/menu.lst file is used by GRUB Legacy. It’s not

used by GRUB2.

 C. The 30_os_prober GRUB2 script can detect other operating

systems, such as Windows, installed on the same system as Linux. It can

use the information it finds to add menu items to the GRUB menu that will

launch those operating systems.

 A. The GRUB_TIMEOUT parameter is used by GRUB2 to specify how

long the user has to make a menu selection from the GRUB menu before

the default operating system is booted.

 D. Runlevel 5 uses a graphical user interface by default.

 B, C. Runlevels 2 and 3 use a command-line interface by default.

 A. The /etc/inittab file is used to set the default runlevel of a Linux

system.

 D. The init command can be used to switch runlevels while the system

is running.

 B. The systemctl isolate multi-user.target command will

switch the system into the systemd equivalent of init runlevel 3.

CHAPTER 12
Managing Hardware Under Linux

In this chapter, you will learn about

 Discovering devices

 Managing kernel modules

 Referencing kernel and user space

 Configuring hardware devices

 Configuring Bluetooth

 Configuring Wi-Fi

 Configuring storage devices

 Printing in Linux

Consumer products actually have to be stronger than military.

—Jerry Lawson, Fairchild

In this chapter we are going to explore how system devices are discovered

and made available to system applications as well as some of the commands

you may use to obtain information concerning system hardware. Only the

first two topics, “Discovering Devices” and “Managing Kernel Modules,”

are covered on the Linux+ exam. The other material is provided as

reference for the Linux+ administrator.

Images

NOTE All of the figures and examples in this chapter were created using

the same virtual machine image you have access to. Remember that even

though we are using the same image device, when you execute the

commands in this chapter, the information may not be the same. You will

learn why in this chapter.

Discovering Devices

Part of the system boot process is discovering hardware devices. The

discovery process starts with searching through system busses for devices.

When a device is found, its properties are discovered and then named

(enumerated) so applications may access the device.

In this section, you will learn how to discover the hardware installed on

Linux systems using the following:

 Displaying the kernel ring buffer with dmesg

 Detecting USB devices with lsusb

 Detecting PCI devices with lspci

Table 12-1 contains a list of device terms we will use in our discussion.

Images

Table 12-1 Device Terms

Displaying the Kernel Ring Buffer with dmesg

The dmesg command is used to read, display, and control the kernel ring

buffer. The ring buffer is a cyclical storage space of specific size that

contains kernel log messages. Once a ring buffer’s space has been used,

data will be overwritten (starting from the beginning of the buffer). In many

cases, log information found in the ring buffer will be handled by the

syslog facility kernel.

To search the dmesg ring buffer use the syslog facility and priority

names (see Table 12-2). The syslog logging utility is discussed in detail

in Chapter 16.

Images

Table 12-2 Syslog Facilities and Priorities

Images

NOTE dmesg uses the term “level” to describe a syslog priority.

The command dmesg -T -f kern -l notice | grep sdb

(shown in Figure 12-1) displays all messages in the ring buffer that have a

kernel message (-f or --facility) of level notice (-l or --

level) and contain the string sdb . The -T option displays the message

timestamp.

Images

Figure 12-1 Adding a timestamp to dmesg output

Figure 12-2 illustrates kernel log entries during the discovery process of

the USB flash drive.

Images

Figure 12-2 dmesg kernel events

Table 12-3 displays three dmesg command options.

Images

Table 12-3 Options Used with the dmesg Command

Line 1 of Figure 12-3 illustrates how you may search for specific objects

by adding the grep command by running dmesg | grep usb .

Images

Figure 12-3 Using dmesg to look for USB events

Detecting USB Devices with lsusb

The command lsusb -t produces a hierarchical view of USB hubs and

devices attached to the hubs. Lines 1 and 5 of Figure 12-4 display the USB

hub, driver, and transfer speed. 12M indicates 12 megabits per second

(USB 1.0) and 480M indicates 480 megabits per second (USB 2.0). Lines

3, 4, and 6 shows the devices that are attached.

Images

Figure 12-4 Displaying a USB device tree

Figure 12-5 displays a list of USB devices detected using lsusb .

Looking at line 3, you can see information concerning the flash storage

device. Notice this device is connected to Bus 001 . Device 002

indicates this is the second device on the bus.

Images

Figure 12-5 List of USB devices detected using lsusb

The USB Root Hub

Line 4 in Figure 12-5 refers to the first device as a root hub. The root hub is

responsible for communicating with devices attached to hub ports and the

hub controller. The hub controller performs the following tasks:

 It monitors devices being placed on or removed from the hub.

 It manages power for devices on the host’s ports.

 It manages communications on the controller’s bus.

The ID numbers in the lsusb output are contained in two fields:

<manufacturer>:<device_id> . If you look at the table found at

the website www.linux-usb.org/usb.ids (shown in Figure 12-6), you will see

930 is the manufacturer ID for Toshiba Corp. and the device ID 6545 is a

Kingston DataTraveler flash drive.

Images

http://www.linux-usb.org/usb.ids

Figure 12-6 Sample of USB device IDs

You can find out additional information by executing the following

command syntax:

Images

For example, the output of the command lsusb -D

/dev/bus/usb/001/002 displays additional information concerning

the flash drive (see Figure 12-7).

Images

Figure 12-7 lsusb -D output (edited for brevity)

Detecting PCI Devices with lspci

Peripheral Component Interconnect (PCI) is a system specification that

defines the implementation of the PCI bus. The bus supports 32- or 64-bit

addressing and Ultra DMA burst mode, and it can auto-detect PCI

peripheral boards. Multiple PCI busses may be joined using a bridge.

PCI limits the number of busses to 256 per system. Each bus can host up

to 32 devices. Larger systems may require additional PCI busses. This is

accomplished by using domains.

The PCI bus is a hierarchical structure (shown in Figure 12-8) that starts

at the top bus (0).

Images

Figure 12-8 PCI hierarchical structure

The format of the lspci command’s output is

Bus:Device:Function Class Vendor Name .

Images

NOTE The -D option displays the domain number,

Domain:Bus:Device:Function , when executing the lspci

command. If the -D option is not used, the domain is assumed to be

0000 .

Figure 12-9 shows edited output of the lspci command. Line 1 shows

the first device (00) located on bus 02 . The device is a USB controller

manufactured by VMware and its name is USB1.1 UHCI Controller. Lines

2–4 show three other devices located on bus 02 .

Images

Figure 12-9 Output of the lspci command

The class of device, manufacturer, and device name are stored as a

numeric value. This information may be found in

/usr/share/hwdata/pci.ids . Device classes are stored at the end

of the file.

Notice in line 3 of Figure 12-10 that the class ID for the USB controller

is 0c03 , and the vendor information for the device

(<vendor:device>) is 15ad (VMware) : 0770 (USB2 EHCI

Controller).

Images

Figure 12-10 Using lspci to view vendor and class ID

The -v and -vv options display additional bus information, as shown

in Figure 12-11.

Images

Figure 12-11 The -v and -vv options of lspci

In Figure 12-12, we combine the -t and -v options. The -t option

displays a tree structure and the -v option prints more detailed

information.

Images

Figure 12-12 The -t and -v options of lspci

Host Bus Adapter

A host bus adapter (HBA), also called a host adapter or host controller, is an

expansion card used to connect multiple devices, using a single controller,

with a computer system. Here are some examples of host adapters:

 IDE, SCSI, and SATA controllers

 iSCSI and Fiber Channel controllers

 Network controllers

To view HBA adapters, execute the command lspci -nn | grep

-i hba or the command systool -c <adapter_class> . You

could also look for information in /sys/class .

Managing Kernel Modules

As with most other operating systems, you can manually list, load, or

unload Linux kernel modules. To view all currently loaded kernel modules,

use the lsmod command. This command pulls data from the

/proc/modules file and reformats into a human-readable table. To use

this command, simply enter lsmod at the shell prompt, as shown in the

following example:

Images

The lsmod output displays the size and dependents of the module. The

Size field is a relic of the 20th century when 64MB RAM was a lot of

memory. System administrators were always looking for ways to save

memory, and if removing an unimportant module would help, it would be

blacklisted.

Images

EXAM TIP To blacklist a module, such as joydev , add it to a

/etc/modprobe.d/ configuration file. Also, to keep the joydev

module from being installed as a dependency for another device, set the

module to /bin/false , as follows:

Images

To view more information about a loaded module, use the modinfo

command. You can first use lsmod to find the module, and then enter

modinfo <module_name> at the shell prompt. In the preceding

example, one of the modules displayed by lsmod is joydev , which is

the system’s joystick kernel module. To view more information about this

module, enter modinfo joydev at the shell prompt, as shown in this

example:

Images

To load a kernel module, you first need to run the depmod command

from the shell prompt. This command is used to build a file named

modules.dep that is stored in

/lib/modules/kernel_version/ , as shown here:

Images

Within this file, depmod lists the dependencies between modules. This

helps other kernel module management utilities ensure that dependent

modules are loaded whenever you load a module. (The depmod command

is a good utility to understand, but it is not included in the CompTIA

Linux+ exam objectives.)

With the modules.dep file created, you can now go ahead and load

kernel modules. You can use one of two different commands to do this. The

first is the insmod command. The syntax for insmod is insmod

<module_filename> . The module filename is usually a kernel module

located in a subdirectory of

/lib/modules/kernel_version/kernel/ . For example, if you

wanted to load the driver for a standard PC parallel port, you would enter

the following at the shell prompt, after uncompressing the module using

unxz :

Images

Images

NOTE If you accidentally keep typing imsmod instead of insmod

because you’re using a DVORAK keyboard, for example, create a link by

running:

sudo ln /usr/sbin/insmod /usr/sbin/imsmod

In addition to insmod , you can also use the modprobe command.

Most Linux admins prefer modprobe to insmod because insmod

doesn’t install module dependencies identified by depmod , but

modprobe does.

The syntax for using modprobe is modprobe <module_name> .

As with insmod , the module loaded with modprobe is in a

subdirectory of /lib/modules/kernel_version/kernel/ . For

example, the /lib/modules/3.11.10-21-

desktop/kernel/drivers/net/ethernet directory contains

kernel modules for a variety of network devices, as shown here:

Images

To load the kernel module for the 3c590 network card, enter

modprobe 3c590 at the shell prompt. You’re probably wondering at

this point if the module will be persistent across system restarts after it has

been loaded with modprobe . The answer is no.

To automatically detect devices during boot, modprobe is now

automatically run every time the kernel loads. It reads the information

contained in /etc/modprobe.d/*.conf files to determine what

kernel modules should load during startup.

The /etc/modprobe.d/*.conf files use the following directives:

 install <module_name> Tells modprobe to load the specified

module. It can also be used to run any valid shell command, providing

flexibility when loading modules.

 alias <alias_name> <module_name> Gives a kernel module an

alias name that can be used to reference it from the shell prompt.

 options module_name options Gives modprobe a list of

options, such as irq= and io= , that should be used when a particular

kernel module loads.

If you need to unload a currently loaded kernel module, use rmmod

<module_name> at the shell prompt. Be warned that this command

won’t work if the device serviced by the module is in use. Like insmod ,

rmmod does not take module dependencies into account, so they are

ignored. To remove a module and take dependencies into account, use

modprobe by running modprobe –r <module_name> .

Next, practice working with kernel modules in Exercise 12-1.

Exercise 12-1: Working with Kernel Modules

In this exercise, you will practice viewing information about kernel

modules. You can perform this exercise using the virtual machine that

comes with this book. Run snapshot 12-1 for the correctly configured

environment.

Images

VIDEO Please watch the Exercise 12-1 video for a demonstration on how

to perform this task.

Complete the following:

 Boot your Linux system and log in as the student user.

 Open a terminal session.

 Switch to your root user account by entering the su – command.

 View the status of your system’s kernel modules by entering lsmod |

less at the shell prompt.

 Page through the list of kernel modules. When finished, press q .

 View information about the parport kernel module by entering

modinfo parport at the shell prompt.

 Create a list of module dependencies by entering depmod at the shell

prompt.

 Use the less or more utility to review the dependency file,

modules.dep , you just built in /lib/modules/$(uname -r)/ .

The string $(uname -r) lists the kernel version, and is explained more

in Chapter 13.

 Enter lsmod | grep joydev at the shell prompt. You should see a

0 on the output line, indicating the module is loaded but the hardware is

not in use.

 Remove the joydev module by entering rmmod joydev at the shell

prompt.

 Verify that the joydev kernel module was unloaded by entering lsmod

| grep joydev again at the shell prompt. You should see no output

listed, indicating the module isn’t loaded.

 Reload the joystick module by entering modprobe joydev at the shell

prompt.

 Enter lsmod | grep joydev at the shell prompt again. You should

again see a 0 on the output line, indicating the module is loaded but the

hardware is not in use, as shown here:

Images

Referencing Kernel and User Space

To protect kernel information from users, system memory is divided into

kernel space and user space. The kernel memory is only accessible to the

kernel, and the user memory is accessible to users and applications. Some

kernel data is made available to users via directories such as /proc and

/sys , and USB devices can be customized through udev .

/sys and sysfs

The sysfs filesystem is a memory-based filesystem mounted on the

directory /sys . The sysfs filesystem provides user space with the

properties and dynamic operational statistics of system hardware and

filesystems.

Images

NOTE Do not confuse /sys with /proc/sys . /proc/sys

contains kernel operating parameters, which may be manipulated by

changing entries in the /proc/sys directory (temporary changes) or

/etc/sysctl.conf file (permanent changes).

On boot, the Linux kernel modules detect and initialize devices by

scanning each system bus. Device manufacturers assign to each device a

vendor name and device ID. The Linux kernel assigns to the device a major

number and minor number based on the vendor name and device ID.

Next, the kernel creates a directory in /sys . Each directory contains

subdirectories (see Table 12-4) that contain device attributes. Table 12-5

lists some device attribute directories.

Images

Table 12-4 /sys (sysfs) Directories

Images

Table 12-5 sys Device Attribute Directories

block

The block directory contains an entry for each system block device. This

information is used by the lsblk command (see Figure 12-13).

Images

Figure 12-13 Output of the lsblk command

The entries in the block directory are symbolic links to directories in

/sys/devices (lines 1–9 in Figure 12-14). The block device

directory contains operational information for the devices (lines 11–15 in

Figure 12-14).

Images

Figure 12-14 View of /sys/block

Images

NOTE For a closer view of Figure 12-14 and other selected images from

this chapter, download the full-resolution images from the online content

for this book.

You can also use the systool command to examine system busses.

The systool command is part of the sysfsutil package, which is

not installed by default. Executing the command systool displays a list

of supported busses, classes, devices, and modules. This package is

installed on your system. Figure 12-15 illustrates the use of the command

systool -c block to display block devices. The -p option displays

the path to the block devices.

Images

Figure 12-15 systool -c block

Images

NOTE Figure 12-15 has been edited for brevity.

bus

A bus is a system device used to transfer data between devices. The

/sys/bus directory contains operational statistics for all system busses.

Lines 1–6 in Figure 12-16 display different bus types. On lines 12–14 in

Figure 12-16, you can see the files found in the /sys//bus/usb

directory.

Images

Figure 12-16 View of /sys/bus

Each directory in /sys/bus/ contains device and driver directories.

The device directory (lines 21–25 in Figure 12-16) contains entries for

devices discovered on the bus. Most of these files are symbolic links to the

directory /sys/devices/ .

The drivers directory (lines 30–36 in Figure 12-16) contains device

driver information for all discovered devices on the bus.

You can also use the command systool -pb scsi to display SCSI

bus information. Figure 12-17 displays the instances of a SCSI bus (-b

scsi) and paths (-p).

Images

Figure 12-17 Using systool to display bus devices

class

A device class contains devices that perform similar operations, such as

block (block device). Figure 12-18 illustrates listings found in

/sys/class .

Images

Figure 12-18 View of /sys/class

udev

udev stands for userspace /dev/ . The /dev/ directory provides

access to system devices. After the kernel module detects a device and has

made the appropriate entries in /sys/ , it generates a uevent . The

udev service, systemd-udevd.service , responds to the uevent

and matches the attributes of the device specified in /sys/ to a udev

configuration rule, which ensures a device’s configuration is persistent

across system reboots.

Location of udev Rules

udev rules are located in /lib/udev/rules.d (system default

rules) and /etc/udev/rules.d (custom rules). In Figure 12-19, you

can see that each rule begins with a number and then a short name. The

udev daemon searches for rules in dictionary order (numbers first, then

short name). Later rules (higher number) can override earlier rules.

Images

Figure 12-19 /lib/udev/rules.d directory (edited for brevity)

Figure 12-20 displays a section of the rule 60-persistent-

storage.rules , which creates the entries by-label , by-uuid ,

by-id , by-partlabel , and by-partuuid in /dev/ for a disk

device.

Images

Figure 12-20 Persistent storage rules example

Notice the entry 99-vmware-scsi-udev.rules in both

/lib/udev/rules.d (line 13 in Figure 12-19) and

/etc/udev/rules.d (line 5 in Figure 12-21). This tells us that the

default rule in /lib/udev/rules.d has been customized and udev

will use the rule /etc/udev/rules.d rather than the rule in

/lib/udev/rules.d .

Images

Figure 12-21 /etc/udev/rules.d

udevadm

udevadm is a utility that can manage and obtain information about a

system device.

udevadm info

The command udevadm info (see Figure 12-22) searches the udev

database for device information. The format of the command is as follows:

Images

Figure 12-22 Sample udevadm info command

Images

or

Images

Table 12-6 lists the query types for udevadm info.

Images

Table 12-6 udevadm Info Query Types

The attribute walk option (-a) of udevadm info may assist you in

troubleshooting. Its output will display a device and its attributes as well as

the attributes of all its parent devices. An example of the command is

udevadm -a --name=/dev/sda .

udevadm monitor

The command udevadm monitor listens for uevents and displays

them on the console. By default, udevadm monitor will display the

kernel uevent and the udev process.

You can restrict the output to kernel uevents (-k or --kernel)

or to udev events (-u or --udev). In addition, the option -p will

display the properties of devices associated with the event.

udevadm control

The command udevadm control is used to control systemd-

udevd.service .

Creating udev Rules

A udev rule is used to match a uevent with some action. You create

rules by using a comma-delimited set of key/value entries. These keys can

be either match keys or assign keys.

It is important to remember that udev rules are read in order of priority

(lower number to higher number). When you’re initially creating rules, use

the command line. Once a rule has been completed, test the rule before

adding it to /etc/udev/rules.d .

udev rules support the following globbing characters:

Images

udev supports substitutions, such as $(pwd) , and also maintains a

built-in list of substitution strings, listed in Table 12-7.

Images

Table 12-7 udev Built-in Substitutions

Prior to creating rules for a device, you must know its properties.

Executing the udevadm info command enables you to display device

properties. In Figure 12-22, I executed the command udevadm info -

q property -n /dev/sdb to view the properties of the drive.

Images

NOTE The examples in this chapter use a DataTraveler flash drive

enumerated as /dev/sdb .

Match Keys

Match keys are used to match conditions that must exist for the rule to

apply. Table 12-8 reviews some of the match keys.

Images

Table 12-8 udev Rule Match Keys

When matching a key with a value, you use one of the operators in Table

12-9. The value must be enclosed in double quotes (" ").

Images

Table 12-9 udev Match Operators

The following key/value pairs would match our device, the DataTraveler

flash drive:

Images

NOTE udev requires one rule per line. If a rule will exceed a single

line, use a \ to join multiple lines, known as command-line extension (as

discussed in Chapter 1).

Images

This could also have been written as follows:

Images

Or it may have been written like this:

Images

Assign Keys

Once you have matched the device, you can assign values using the assign

operators in Table 12-10 and the assign keys in Table 12-11.

Images

Table 12-10 udev Assign Operators

Images

Table 12-11 udev Assign Keys

Assign keys are used to add an action or value to a device.

Once you have completed your rule, you need to test it. The command

udevadm test --action <udev_rule> will test the rule without

implementing it. If no error messages are displayed, the rule has no

functional errors.

udev automatically detects changes to rules files when a rule is added

or changed. Therefore, most changes will take place immediately. Existing

devices may require the command udevadm control --reload for

rule changes to be applied.

Configuring Hardware Devices

In this section, you will learn general elements and commands that are used

to configure hardware devices. The following is for your reference.

lsdev

The lsdev command displays information about installed hardware.

lsdev retrieves information from /proc/interrupts ,

/proc/ioports , and /proc/dma and displays the following

columns:

 Device

 DMA

 IRQ

 I/O Ports

Figure 12-23 shows output of the lsdev command. The lsdev

command lists data on DMA, IRQ, programmable interrupts, and more as

discussed in the following subsections.

Images

Figure 12-23 lsdev (output edited for brevity)

DMA

Direct memory access (DMA) enables devices to transfer data directly

without the need of the CPU controlling the transfer.

DMA is implemented on the motherboard using the DMA controller

chip (DCC). The DCC has four leads that connect it to the memory

controller chip (MCC). Each of these leads is referred to as a DMA channel.

Two DCC chips may be connected together via channel 0 on the first chip

and channel 4 on the second chip (cascade), as shown in Figure 12-24. Only

one device may be assigned per channel. By default, channels 1 and 2 are

reserved.

Images

Figure 12-24 DMA controller

Ultra DMA is a method that allows devices to bypass the DMA

controller and transmit data in bursts of either 33 or 66 Mbps. (Normal

DMA transfer speeds are approximately 7.2 Mbps.)

The file /proc/dma (shown in Figure 12-25) displays active DMA

channels. (The cascade entry shown is simply a placeholder, noting that

channel 4 is unavailable to drivers.)

Images

Figure 12-25 /proc/dma

Interrupts

Every device is assigned an interrupt. Each interrupt is assigned a priority

(interrupt request level) based on the importance of the device it is

associated with.

Programmable Interrupt Controller A programmable interrupt

controller (PIC) can manage eight interrupts per controller. The interrupt

request line of a device is electrically attached to an interrupt line on the

PIC.

Systems using PIC chips have one PIC chip (master) managing

interrupts 0–7 and a second PIC chip (slave) managing interrupts 8–15.

Devices configured to use interrupt 2 use interrupt 9. Interrupt 9 is used

for peripherals or the SCSI host adapter. Interrupt 2 is used by the slave PIC

to signal the master PIC. The master PIC is connected to the CPU.

Advanced Programmable Interrupt Controller The Advanced

Programmable Interrupt Controller (APIC) has eight additional interrupts to

manage PCI interrupts and can support 255 physical interrupt request lines.

This system consists of a Local APIC (LAPIC) and an I/O APIC.

Images

NOTE It is easy to confuse APIC (Advanced Programmable Interrupt

Controller) with ACPI, which stands for Advanced Configuration and

Power Interface.

The LAPIC is built into the CPU and is used to accept and generate

interrupts. The I/O APIC contains a table that directs interrupt requests to

one or more LAPICs.

If a system has APIC capabilities, but grub.conf contains the entry

noapic , the system will use PIC.

/proc/interrupts Figure 12-26 displays edited output of the file

/proc/interrupts , which contains the following information:

Images

Figure 12-26 /proc/interrupts (edited for brevity)

 The interrupt number.

 Number of times the interrupt has been requested (per CPU). If the system

contains multiple CPUs, there would be a column for each CPU.

 Type of interrupt.

 Interrupt name.

Interrupt Request Channels The first system resource you need to be

familiar with is the interrupt request channel. Interrupt request channels are

also referred to as IRQs or just interrupts.

When a device is installed in a PC system, it needs some means of

letting the CPU know when it needs attention. Many devices in your PC

need lots of CPU time; other devices need the CPU only on occasion. We

need a way to make sure the busy devices get the attention they need

without wasting time on devices that don’t need as much. This is done

through interrupts.

The CPU in your system has one wire on it called the interrupt (INT)

wire. If current is applied to this wire, the CPU will stop what it is doing

and service the device that placed current on the wire. If no current is

present on the wire, the CPU will continue working on whatever processing

task has been assigned to it.

The interrupt system in a PC is very similar to a typical classroom. In a

classroom setting, the instructor usually presents the material she has

prepared to the students. If a student has a question, he can raise his hand

and interrupt the instructor’s presentation. After the question is answered,

the instructor resumes the presentation.

PC interrupts work in much the same manner. Like the instructor, the

CPU goes about its business until it is interrupted. Once interrupted, the

CPU diverts its attention to the device that raised the interrupt. Once the

device’s request has been satisfied, the CPU goes back to what it was doing

before.

The advantage to using interrupts is that the CPU services system

devices only when they need it. It doesn’t waste processing time on devices

that are idle.

The PIC chip is connected to the INT wire on the CPU as well as the

interrupt wires in your motherboard’s expansion bus. When a device needs

attention, it applies current to its interrupt wire. The PIC is alerted by this

event and applies current to the CPU’s INT wire. The CPU acknowledges

the interrupt, and the PIC then tells the CPU which interrupt number was

activated. The CPU can then service the device.

Early PCs had only eight interrupts and a single PIC, as just related.

However, a modern PC has many more interrupts. Newer systems use an

Advanced Programmable Interrupt Controller (APIC) chip that supports up

to 255 IRQ lines.

When working with interrupts, you should keep in mind the following

important facts:

 Every device in the PC must be assigned an interrupt.

 Two PCI devices can share interrupts.

 Some system devices have interrupts assigned to them by default. Some of

these can be changed or disabled, but many cannot:

 IRQ 0: System timer

 IRQ 1: Keyboard

 IRQ 3: COM 2

 IRQ 4: COM 1

 IRQ 5: LPT 2

 IRQ 6: Floppy drive

 IRQ 7: LPT 1

 IRQ 8: Real-time clock

 Interrupts 0, 1, and 8 are hardwired. Under no circumstances can you use

these interrupts for any other device in the system.

 If a device with a default interrupt assignment isn’t installed in the system

or is disabled, you can use its interrupt for another device.

In addition to interrupts, devices also require an I/O address to function

in a PC system. Let’s talk about I/O addresses next.

Input/Output Addresses

Input/output (I/O) addresses go by a variety of names in a PC system. You

may hear them referred to as I/O ports, port addresses, or simply ports. An

I/O port is a memory address used to communicate with a hardware device.

The file /proc/ioports will contain a list of I/O ports being used (see

Figure 12-27).

Images

Figure 12-27 /proc/ioports (edited for brevity)

I/O addresses allow communications between the devices in the PC and

the operating system. I/O addresses are very similar to mailboxes. To send a

letter to someone, you must know their mailing address. You write their

address on the letter, and the mail carrier delivers it to the box with that

address. Likewise, the person you wrote to can respond to your letter and

leave it in their mailbox for the mail carrier to pick up.

I/O addresses work in much the same manner. They serve as mailboxes

for the devices installed in the system. Data can be left for a device in its

I/O address. Data from the device can be left in the I/O address for the

operating system to pick up.

On a personal computer, there are 65,535 port addresses for devices to

use.

Images

NOTE I/O addresses are written using hexadecimal notation. Because hex

and decimal numbers can sometimes be easily mistaken, administrators

often put an h either before or after any hex number.

When working with I/O addresses, keep the following important facts in

mind:

 All devices must have an I/O address assigned.

 Most devices will use a range of I/O addresses.

 Devices must use unique I/O ports.

 Default I/O port assignments include the following:

 0000h: DMA controller

 0020h: PIC 1

 0030h: PIC 2

 0040h: System timer

 0060h: Keyboard

 0070h: CMOS clock

 00C0h: DMA controller

 00F0h: Math co-processor

 0170h: Secondary IDE hard disk controller

 01F0h: Primary IDE hard disk controller

 0200h: Joystick

 0278h: LPT2

 02E8h: COM4

 02F8h: COM2

 0378h: LPT1

 03E8h: COM3

 03F0h: Floppy disk drive controller

 03F8h: COM1

lshw

The lshw (list hardware) command may be used to display detailed

hardware configuration information. lshw is a replacement for the

deprecated hwinfo command and should be executed by a user with

root privileges.

The syntax for lshw is lshw -<format> <options> . The

output of the command lshw is a detailed description of system hardware,

starting at the top of the device tree.

In Figure 12-28, I have used the short format option (lshw -short).

This option displays the hardware path (bus address), device name, class of

device, and storage path.

Images

Figure 12-28 Command lshw using -short output format (edited for

brevity)

Images

NOTE The command lshw requires the format option -businfo to

display the bus address.

Additional format options are -html and -xml . When either of these

format options is used, the output must be redirected to a file.

We can focus our output on a specific class or multiple classes of devices

by adding the option -class <class_name> . Here are the available

classes:

Images

The commands lshw -short -class storage, lshw -

short -class disk , and lshw -short -class volume

(shown in Figure 12-29) display hardware information on devices of class

storage , disk , and volume , respectively.

Images

Figure 12-29 Displaying device details using lshw

The command lshw -html -short -class volume >

lshw_html_out will produce a file in HTML format. In Figure 12-30, I

have used Firefox to display the output.

Images

Figure 12-30 lshw formatted as HTML output

Exercise 12-2: Discovering Devices

This exercise reviews some of the tools you have learned to view block

devices.

Images

VIDEO Please watch the Exercise 12-2 video for a demonstration on how

to perform this task.

 View the block devices on your system by executing the lsblk

command.

 Now view the block device entries in /sys by executing the ls -l

/sys/block command.

 You can also view system block devices using the systool -c block

command.

 You know that a bus is a device. View SCSI bus devices by executing the

ls /sys/bus/scsi/devices or systool -b scsi command.

 The command lspci -t | more will display the PCI bus hierarchy.

Adding the -v option (lspci -tv | more) will add information

about devices.

 Prior to creating a udev rule, you’ll want to view the properties of the

device. To display the properties of the device /dev/sda , for example,

you could execute this command: udevadm info -q property -n

/dev/sda .

 Display active DMA channels by executing the cat /proc/dma

command.

 To see interrupt request statistics, view the file /proc/interrupts .

 The command less /proc/ioports will display the memory address

ranges used to communicate with hardware devices.

 The lshw command will list hardware devices. To display types of

storage devices, execute the lshw -class storage command.

 The lsblk command will display block storage devices by devices and

partitions. The command lshw -class volume will display more

detailed partition information.

Configuring Bluetooth

Bluetooth is a device interconnect designed to replace RS232 with wireless

communication operating between 2.4 GHz and 2.485 GHz. The following

is information for your reference.

A Bluetooth master (transmitter) can connect up to seven devices

(receivers) via a piconet, also called a personal area network (PAN).

Although the technology is not currently refined, multiple piconets may be

connected. Multiple networked piconets are called a scatternet.

Classes

Bluetooth classes determine the transmission range of the Bluetooth device.

Table 12-12 details the Bluetooth classes and their transmission ranges.

Images

Table 12-12 Bluetooth Class Transmission Ranges

Bluetooth Commands

Bluetooth commands are provided by the bluez package. To see if

Bluetooth is active, execute the command systemctl status

bluetooth .

The command bluetoothctl list displays a list of available

Bluetooth controllers. The command bluetoothctl show displays a

list of controllers and their status.

The command bluetoothctl scan on displays a list of available

controllers that have not been paired.

To configure a Bluetooth device, you need to know the device’s MAC

address. The command hcitool scan provides a controller’s MAC

address and name.

Once you know the controller’s address, execute the command

bluetoothctl select <controller_MAC_address> to apply

any bluetoothctl commands issued in the next three minutes to that

controller.

Table 12-13 outlines some additional bluetoothctl options. Notice

that some commands are applicable to the controller, whereas others are

applicable to the device.

Images

Table 12-13 bluetoothctl Options

Configuring Wi-Fi

Wi-Fi is a generic name for a wireless technology that uses radio waves to

access a network via wireless access points. You can determine if a Wi-Fi

network device is installed by using the tools discussed next.

Scanning for Network Devices

The following commands may be used to scan for network interfaces:

 ip link show

 ifconfig -a

 ncmli connection show

 ncmli device status

 netstat -i

Table 12-14 contains a partial list of interface names.

Images

Table 12-14 Network Interface Names

Configuring a Wi-Fi Network

Next we will explore configuring a Wi-Fi connection using the iw

command.

Images

NOTE The iwconfig command has been deprecated and replaced by

the iw command.

The following are some Wi-Fi terms that are helpful to know:

 Frequency A frequency is the speed with which data is transmitted and

received. Most Wi-Fi adapters provide a frequency of 2.4 GHz or both 2.4-

and 5-GHz frequencies. The frequencies may be modulated using direct

sequence spread specrum (DSSS) or orthogonal frequency division

multiplexing (OFDM). Frequencies may be divided into channels.

 Channel A channel is like a pipe set inside a frequency as a path for data.

Each channel has an upper and lower frequency and is separated from other

channels by 5 MHz. Overlapping channels share bandwidth. If you look at

Channel 1 on 2.4 GHz, you’ll notice it has a lower frequency of 2,401 MHz

and an upper frequency of 2,423 MHz (20-MHz bandwidth). Channel 2 has

a lower frequency of 2,406 MHz and an upper frequency of 2,428 MHz.

 ESSID Extended Service Set Identification (ESSID) is the identifier

(name) used by a wireless device to connect to a router or access point.

 Router A router is a device that routes data between two or more

networks.

 Access point An access point is a device that connects wireless devices to

a network. Most access points have routers built in.

iw

The iw command is used to set up a wireless interface. Executed without

any options or arguments, iw lists a help menu. To view the status of

wireless interfaces, execute the command iw list.

Most wireless interfaces begin with the letter w, for example, wlan0 .

To view the status of interface wlan0 , you would execute the command

iw wlan0 info .

You may need to know what access points can be seen by a wireless

interface. The command iw <interface_name> scan searches for

available access points.

The command iw <interface_name> essid <essid_name>

connects you to a wireless access point. Assuming an ESSID name of

network_one , the following command connects wlan0 to

network_one :

iw wlan0 essid network_one

You can use a specific channel by adding the channel option:

iw wlan0 channel 11

Once the changes are made, execute the command iw wlan0

commit to ensure that all changes are applied to the interface.

Configuring Storage Devices

This section introduces the various types of storage devices and the

commands associated with them.

IDE

Integrated Drive Electronics (IDE) refers to a technology in which the disk

controller is integrated into the drive. The controller on one drive can

control two devices (master and slave). IDE I/O cards or motherboards that

support IDE contain two IDE channels (primary and secondary).

A single motherboard can support four devices:

 Primary master

 Primary slave

 Secondary master

 Secondary slave

If a system contains multiple IDE drives, the primary master drive is the

default boot drive. Newer versions of IDE drives (ATA-4 forward) support

Ultra DMA. ATA-6, which is also called Parallel ATA (PATA), can reach

data transfer speeds of 133 Mbps.

SCSI

Small Computer System Interface (SCSI) is a parallel interface used to

connect peripheral devices. SCSI devices are connected in a chain through

an internal ribbon or external cable. It is important that the last SCSI device

has a terminator installed.

SCSI devices are defined by the number of bits they transfer at a time

and speed per second. Some SCSI device types are listed in Table 12-15.

Images

Table 12-15 SCSI Device Types

SCSI Device ID and Priorities

Each SCSI device is assigned an ID. The device ID may be set using a

thumb wheel, jumper, or firmware. The device ID determines the priority of

the device. Here are some points to keep in mind:

 The host bus adapter (HBA) is always assigned the highest priority (7).

 Narrow SCSI device priority order is 7, 6, 5, 4, 3, 2, 1, 0.

 Wide SCSI device priority order is 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11,

10, 9, 8.

SATA

A Serial AT Attachment (SATA) drive communicates bit by bit (serial

communications) to a dedicated hard disk channel via a high-speed serial

cable. The cable contains seven pins (two data pair and three ground wires).

One pair of wires is used to receive data, and the other pair is used to

transmit acknowledgements. This wiring scheme is much simpler than the

40-pin or 80-pin ribbon connector required by IDE and removes many of

the electrical limitations imposed by the IDE cable. SATA data transfer

rates range from 150 MBps to 600 MBps.

eSATA

An eSATA port is used to connect external SATA devices to a system.

Power for the device is supplied by an external power supply.

eSATAp

An eSATAp (powered eSATA) port is capable of supplying power to the

external SATA device. An eSATAp port can also support USB.

Optical Drives

Optical drives have the ability to store large amounts of data. Data is

written on a photo-conductive surface using a high-intensity laser. Data is

represented by pits and lands. Pits represent a binary 0, and lands represent

a binary 1. A lower intensity laser is used to read the data. There are three

major types of optical media:

 CD

 DVD

 Blue-ray

Solid State Drives

Solid state drives (SSDs) use flash memory circuitry to store data.

Information stored in flash memory is retained when system power is

removed. Data is stored as if the device was an actual hard drive

(cylinder/head/sector, or CHS). In most cases, SSD drives use the same

interface as SATA, but they can implement other interfaces.

Since data is accessed electronically rather than mechanically, SSD data

is accessed faster than on a traditional hard drive. However, an SSD’s

performance may degrade over time.

USB

USB is a high-speed Plug and Play (PnP) interface that allows multiple

devices to connect via a single bus. A USB bus can support 127 devices in a

star topology. The speed of the bus is limited to the speed of the slowest

device on the bus. Standard bus speeds are as follows:

 USB 1.0: 12 Mbps

 USB 2.0: 480 Mbps

 USB 3.0: 800 Mbps

 USB 4.0: 40 Gbps

Images

NOTE USB 3.0 is capable of 800 Mbps, but multiple USB devices may

be connected to the USB interface via a USB hub, which could slow down

the connection.

Make sure you are familiar with the following terms for our discussion

of USB devices:

 USB A bus type used for data transfer

 Port A physical connection to a bus

 Flash drive A storage device that contains a USB interface and flash

memory; also known as a thumb drive because of its physical size

USB devices may draw power from the USB connection or require an

external power supply.

Images

NOTE For the following examples, I have attached a Kingston 4G

DataTraveler flash drive to a virtual machine.

Connecting a USB Device

When a flash drive is connected, the kernel creates a uevent , udev

configures the device, and dbus informs user applications the device is

available. We can view some of this activity using the dmesg command.

hdparm

hdparm is another utility used to query hard disk statistics and can

change drive operating parameters. Use extreme caution when changing

drive parameters. Table 12-16 shows options for the hdparm command.

Images

Table 12-16 hdparm Options

lsscsi

The lsscsi command is used to get SCSI device and host information.

The lsscsi command displays a list of SCSI devices and hosts, as

shown in Figure 12-31. The output on the left represents

[host:channel:target_number:lun]. Here’s a breakdown of the

output:

Images

Figure 12-31 lsscsi

 The host number indicates the number assigned to the adapter card.

 The channel indicates the bus number.

 The target number is the device number.

 The LUN is the logical unit number.

In larger systems, there may be an additional number at the beginning:

[domain:host:channel:target_number:lun].

Table 12-17 shows options for the lsscsi command.

Images

Table 12-17 lsscsi Options

Printing in Linux

The following is good reference information about Linux printing. I created

file-based printers to demonstrate the commands in this section. To do this,

I removed the comment symbol (#) before the directive FileDevice

in the file /etc/cups/cup-files.conf and changed the value to

Yes (that is, FileDevice Yes).

To specify a printer device name, use the syntax

file:///dev/tty[2-5] . A printer named tty2printer has

been configured as a raw printer on /dev/tty2

(file:///dev/tty2) .

To view printer output on these terminals from the GUI environment, use

the key sequence CTRL-ALT-F[2-4] (F2 would be function key 2). To move

between the text terminals, use the key sequence ALT-F[2-5]. To return to the

GUI, use the key sequence ALT-F1.

The Common UNIX Printing System provides tools that manage

printing. The directory that contains CUPS configuration files is

/etc/cups/ .

The CUPS daemon executes in the background, waiting for print

requests. The CUPS daemon may be configured in the file

/etc/cups/cupsd.conf .

Adding Printers

You can add printers via the command line, the GUI, or web access. Use the

lpadmin command to add and configure printers and printer classes.

Printer configuration information is stored in /etc/printers.conf .

Printer class information is stored in /etc/cups/classes.conf .

A printer class is a group of printers associated with a single print queue.

As print jobs are submitted to the queue, they are sent to the next available

printer in the queue.

Prior to creating a printer, execute lpinfo -v (shown in Figure 12-

32) to determine available devices.

Images

Figure 12-32 lpinfo -v

The lpinfo -m command determines what drivers are available. The

command lpinfo -m | grep -i <printer_name> lists all the

driver files. Find the appropriate model and write down the provider printer

description (PPD) filename so that you can download the correct PPD file

from the printer manufacturer’s website.

Table 12-18 displays some lpadmin options.

Images

Table 12-18 lpadmin Options

The following command creates printer tty3printer on

/dev/tty3 using raw printing:

Images

Raw printing bypasses a printer driver and sends characters directly to

the printer. The command lpstat -p tty3printer (line 1 in Figure

12-33) shows the printer is disabled. To start the printer and allow the

printer’s print queue to accept print jobs, issue the command lpadmin -

p tty3printer -E (see line 5). Line 8 shows that the printer is

enabled. You could execute the following command to create and enable the

printer:

Images

Figure 12-33 Determining the status of tty3printer

Images

The command lpadmin -d sets the default system printer.

A printer class groups two or more printers. Instead of printing to a

specific printer, you may print to the printer class. If one printer in the class

is busy, the print job will be serviced by another printer in the class. The

command lpadmin -p tty3printer -c testclass adds

printer tty3printer to the printer class testclass . If the class

does not exist, it will be created.

Images

NOTE You cannot assign a printer as a default printer or assign a printer

to a class until it has been created.

To remove a printer from a class, use the following command:

Images

If you are removing the last printer in the class, the class will be deleted.

The command lpstat -c displays a list of all printer classes and

printers that are members of that class (see line 1 of Figure 12-34). To view

members of a specific printer class, use the command lpstat -c

<printer_class> (see line 5). Lines 9 and 11 add tty2printer to

the classes testclass and testclass2 .

Images

Figure 12-34 Using lpstat -c to view printer classes

To remove a printer from a class, execute the following command:

Images

Web Interface

You can administer a printer via a web browser. Open a browser and enter

http://localhost:631 (see Figure 12-35). This is the port for the

CUPS web interface. From this interface, you can manage all printer

functions.

Images

Figure 12-35 The CUPS web interface

Selecting the Printers tab displays the available printers. Selecting a

printer opens a management window for that printer (see Figure 12-36).

Images

Figure 12-36 Web interface for managing a printer

Printing to a Printer

You can use the commands lpr and lp to print to a printer. If no printer

is specified, the default printer will be used. To determine the default

printer, execute the command lpstat -d .

The command lp -d tty2printer /etc/hosts will print the

file /etc/hosts to tty2printer . When the job is submitted, a job

ID will be displayed. The job ID consists of

<printer_queue_name>-<job_id> (see Figure 12-37).

Images

Figure 12-37 Output of the print job

To print to a printer class, use the following command:

Images

Managing Printers and Print Queues

A printer queue is created each time a printer or printer class is added. The

queue name is the same as the printer or printer class added.

cupsaccept , cupsreject , cupsenable , cupsdisable

A print queue can accept print jobs or reject print jobs. When it’s accepting

print jobs, print requests may be entered into the queue and passed to the

printer. When it’s rejecting print jobs, a submitted print job receives an error

message. A reason for rejecting print jobs may be a broken printer.

To reject jobs for a print queue, execute the command cupsreject

<queue_name> . To accept jobs for a print queue, execute the command

cupsaccept <queue_name> . Once a job has been spooled to the

queue, it is sent to the printer.

A printer is either enabled or disabled. If the printer is enabled, it is

accepting print jobs from the print queue. A disabled printer is not

accepting jobs from the print queue. In this case, print jobs are stored in the

queue until the printer is enabled or the print jobs are moved to another

queue.

To disable a printer, execute the command cupsdisable

<printer_name> . To enable a printer, execute the command

cupsenable <printer_name> .

The command lpstat -p <printer_name> prints the printer

status. The command lpq -P <queue_name> prints the status of a

print queue. The status includes any print jobs held in the queue. The

command lpstat -o displays all print jobs, and the command

lpstat -o <queue_name> displays print jobs for a specific queue.

The following conditions were applied prior to executing the commands

shown in Figure 12-38:

Images

Figure 12-38 Using lpstat and lpq to view print queues

 The commands cupsdisable tty2printer and cupsdisable

tty3printer were executed to disable printers tty2printer and

tty3printer .

 The commands lp -d tty2printer /etc/hosts and lp -d

tty3printer /etc/hosts were executed.

The lpstat -o command on line 1 of Figure 12-38 displays all print

jobs in all queues. You can look at jobs in specific queues by executing the

command lpstat -o <queue_name> (lines 5–9). The lpq

command (lpq -P <queue_name>) on lines 11 and 16 displays the

status and jobs queued for the respective queue names.

Canceling Print Jobs

The cancel command is used to cancel print jobs. The command

cancel <job_id> (Figure 12-39, line 5) cancels a specific print job.

Images

Figure 12-39 Canceling print jobs

The command cancel <queue_name> (line 10) cancels all jobs in

the queue. The command cancel -a removes all jobs from all queues.

lpmove

The lpmove command moves print jobs from one queue to another. In

line 2 of Figure 12-40, you can see that job 6 is in the print queue

tty3printer . The command lpmove <job_id>

<printer_queue> moves a print job from one queue to another.

Images

Figure 12-40 Moving printer jobs

The output of the lpstat command on lines 8 and 9 of Figure 12-40

indicates both print jobs are in the queue of tty2printer . Run

lpmove <old_print_queue> <new_print_queue> to move all

jobs from the old print queue to another. Run lpmove tty2printer

tty3printer (line 11) to move all the print jobs in tty2printer to

tty3printer (lines 13–15).

Removing a Printer or Printer Class

Prior to removing a printer, you need to disable the printer by running the

command cupsdisable <printer_name> . Then stop the queue

from accepting any additional print jobs by executing the command

cupsreject <queue_name> . Next, use the cancel or lpmove

command to remove all jobs from the current queue. Verify there are no

jobs left in the queue by running lpstat -o <queue_name> . Delete

the printer or class by executing the command lpadmin -x

<printer_name>|<class_name> .

Exercise 12-3: Printing

For this exercise, log in as user root (password root). Remove all

printer classes and all printers except tty2printer by following these

steps:

Images

VIDEO Please watch the Exercise 12-3 video for a demonstration on how

to perform this task.

 Determine what printers and print classes are currently on your system by

executing the lpstat -p command. You should have the printer

tty2printer .

 Determine if there are any print jobs in the print queues by executing the

command lpstat -o or lpstat <queue_name> .

 Create the class labclass and add tty2printer to it by executing

the lpadmin -p tty2printer -c labclass command.

 Verify your command by executing the command lpstat -c -p

tty2printer .

 Create a raw printer (tty3printer) using device /dev/tty3 ; the

printer should be a member of the printer class labclass and be the

default printer:

Images

 Verify the printer was created correctly using the lpstat -p , lpstat

-c , and lpstat -d commands.

 Disable printers tty2printer and tty3printer using the

cupsdisable <printer_name> command. Test your results using

the lpstat -p <printer_name> command.

 Be sure to do this lab step as written. Print the files /etc/hosts and

/etc/shells to both printers tty2printer and tty3printer

by using the following commands:

Images

 Verify the jobs are in the queues using the lpstat -o command.

 Print (lp) the file /etc/passwd to the (-d) labclass queue and

verify the job has been printed (lpstat -o).

Images

 Prevent queues tty2printer and tty3printer from accepting

print jobs by executing the cupsreject tty2printer and

cupsreject tty3printer commands. Verify the results by

executing the lpstat -p tty2printer and lpstat -p

tty3printer commands.

 Print the file /etc/group to printer tty2printer and class

labclass . What happened? Why?

Images

 Move all the print jobs in class labclass and tty3printer to

tty2printer . Remember that tty2printer ’s queue is not

accepting jobs, so you must fix that first. Once you are finished, check all

the print queues:

Execute cupsaccept tty2printer so the queue will start accepting

jobs and verify the queue is accepting jobs.

 Execute lpmove labclass tty2printer and lpmove

tty3printer tty2printer .

Check the results with the lpstat -o tty2printer command.

 Remove tty3printer from class labclass by executing the

lpadmin -p tty3printer -r labclass command. Verify this

by executing the lpstat -c ttyprinter3 command.

 Remove the printer tty3printer and class labclass :

Execute the lpstat -a -c command.

 Execute the lpadmin -x tty3printer; lpadmin -x

labclass command.

Verify by executing the lpstat -a -c command.

Chapter Review

In this chapter, you discovered how to search for, add, modify, or remove

hardware. You began by learning how the kernel discovers devices and

writes configuration and statistical data to /sys/ . You then learned how

the /dev/ directory is built so users can access devices. During this

process, you developed the skills to search for hardware information using

the lsdev , lspci , lshw , systool , and udev commands.

You continued your discovery by learning about Bluetooth, Wi-Fi, and a

variety of storage devices. You finished the chapter by learning how to add,

modify, and delete printers and printer classes. Here are some key points

from this chapter:

 A device is a system component capable of receiving or providing data.

 A bus is a system device used to transfer data between devices.

 A port is a physical connection to a bus.

 A driver is a file or group of files used to control a hardware device.

 Kernel space is memory accessible to the kernel.

 User space is memory accessible to users and user applications.

 Kernel information is made available to users via /proc/ and /sys/ .

 Major numbers designate a device class.

 lsblk prints a list of block devices.

 A device class contains devices that perform similar operations.

 The output of the lspci -D command is

Domain:Bus:Device:Function Class Vendor Name .

 A host bus adapter is an expansion card used to connect multiple devices

using a single controller to a computer system.

 Executing lspci -nn | grep -i hba or systool -c

<adapter_class> displays host adapters.

 The lsdev command displays information about installed hardware

 Every device is assigned an interrupt (IRQ).

 /proc/interrupts displays active interrupts.

 Use the lshw (list hardware) command to display detailed hardware

configuration information.

 To create a module alias, add alias <alias_name>

<module_name> to a configuration file under /etc/modprobe.d/ .

 dmesg is a command used to read and control the kernel ring buffer.

 To blacklist a module, add blacklist <module_name> to a

configuration file under /etc/modprobe.d/ .

 lsusb displays a list of USB devices.

Questions

 Which directory contains device operational and statistical information

discovered during the boot process?

 /dev

/proc/sys

 /sys

 /devices

 What of the following describe a bus? (Choose two.)

 A system device

A system port

 A system driver

 Used to transfer data between devices

 When are major and minor numbers discovered?

 During the device discovery process

When creating an entry in /dev

 When a device is accessed

 When a device is created

 Which of the following commands will display block devices? (Choose

four.)

 lsblk

systool -c block

 lshw -short -class volume

 ls -l /sys/block

lsblock

 Which of the following commands would display uevents ? (Choose

two.)

 udevadm info

udevadm monitor

 dmesg

 grep uevent /var/log/messages

 What will the command dmesg -f kern -l notice | grep

sdb do?

 Display all uevents associated with /dev/sdb .

Display kernel messages containing the string sdb generated by facility

kernel and priority notice .

 Display all kernel events associated with /dev/sdb .

 Display all kernel messages.

 Which of the following are the proper ways to blacklist the joydev

module and assure it will not be installed as a dependency? (Choose two.)

 echo "blacklist joydev" >> /etc/modprobe.d

echo "blacklist joydev" >>

/etc/modprobe.d/blacklist.conf

 echo "install joydev /bin/true" >> /etc/modprobe.d

 echo "install joydev /bin/true" >>

/etc/modprobe.d/blacklist.conf

 Before writing a udev rule for a device, what command would you

execute?

 lsblk

systools

 udevadm info

 udevadm reload

 Which file contains a list of active direct memory access channels?

 /proc/interrupts

/etc/dma

 /proc/dma

 /proc/memory

 To display a hierarchical view of USB devices, you would execute which

command?

 lsusb

lsusb -t

 lsusb -D

 usbdev -t

 To manage CUPS using the browser interface, you would open your

browser and enter which of the following?

 :631

631

 localhost:631

 localhost:cups

Answers

 C. During the boot process, kernel modules discover device information

and populate /sys . Operational statistics are also stored in /sys .

 A, D. A bus is a system device used to transfer data between devices.

 A. The major and minor numbers are discovered during the kernel device

discovery process. The major number is associated with the device class.

The minor number is used by the device driver.

 A, B, C, D. Each of these choices will display a listing of block devices.

 B, C. The command udevadmin monitor can display both kernel and

udev events associated with hardware discovery. The dmesg command

may be used to display kernel events.

 B. You can use the facility (-f) and priority (-l) filters found in syslog

to filter the dmesg output. This question is asking to display the facility

kernel and priority notice.

 B, D. Modifying configuration files within

/etc/modprobe.d/*.conf allows you to blacklist a module and

keep it from being installed as a dependency, even when you set it as

/bin/true .

 C. udevadm info would provide you all the device attributes that can

be used to write udev rules.

 C. The file /proc/dma contains a list of active direct memory access

(DMA) channels.

 B. The command lsusb -t produces a hierarchical view of USB hubs

and the devices attached to the hubs.

 C. Port 631 is used to access the CUPS web tool. Entering

localhost:631 will start the CUPS web configuration tool.

CHAPTER 13
Writing Shell Scripts

In this chapter, you will learn about

 Advanced shell concepts

 Understanding shell script components

 Using control operators

 Processing text streams

Software is supposed to serve the human and not the other way around

—Gloria Washington, Howard University

This chapter covers how to create and control basic shell scripts on a Linux

system. Shell scripts are text files that contain a variety of commands that

can be used to automate tasks and process information. Scripts have

features of many programming languages, including variables, operators,

conditionals, looping, and more. Because these features are related to the

Bash shell, details are found in the bash man page.

NOTE Most of the scripts found in this chapter can be found on the image

provided with the book in the directory /LABS/Chapter_13 .

Advanced Shell Concepts

A script is a series of commands that produces a specific result. When you

run commands at the shell, you are intermittently acting like a script; the

only difference is that the script groups the commands together within a file

and executes the file.

To create your first script, run vi myscript.bash and type the

following in the file:

Save the script by selecting Esc :wq <Enter> .

You can run your new script by executing one of the following

commands: source myscript.bash , . myscript.bash , or

bash myscript.bash . The script will execute if you have read

permission on the file.

NOTE The . bash suffix is for your convenience so that you can

recognize the file as a Bash script. GUIs use suffixes to determine the type

of file, but Linux ignores them. To Linux, a suffix is simply part of the

filename.

To make the script executable to everyone, run chmod +x

myscript.bash . Once the script is made executable, supply the

absolute path to the script. For example, enter

/home/student1/myscript.bash .

To run a script using the relative path, tell Linux to look in the current

directory by entering ./myscript.bash .

Finally, you could set up the PATH variable to always look in your

current directory “ . ” to run a command by entering PATH=$PATH:. ,

but this poses a security risk. If a hacker were to place a fake passwd

program in your directory, then whenever you ran passwd , the hacker’s

program would run, steal your password, and compromise your system.

Knowledge of additional shell features will make you better at writing

scripts. Here we will cover the advanced shell features of

 Globbing wildcard characters

 Sequencing commands

 Command substitution

Let’s start by exploring wildcard characters called globs.

Globbing Wildcard Characters

Globbing wildcard characters allows users to list in their directory only the

files that they want to see. For example, suppose the files in your directory

appear like so:

You can list only the files you want to see by using Bash shell pattern-

matching characters listed and described in Table 13-1.

Table 13-1 Bash Shell Wildcard Characters

The following four entries display, respectively, how to list only files

that start with f or n and end with 0 , only files that start with f and

end in 1 , only files that have four characters, and only files note12

through note14 :

NOTE To create a list of files similar to the preceding examples for

practice, use the Bash shell feature called brace expansion. In a new,

empty directory run:

Sequencing Commands

You can sequence commands together with either the && , || , or ;

metacharacters. The && means run the next command only if the previous

command was successful. The || means run the next command only if the

previous command was unsuccessful. The ; runs the next command

whether the previous command was successful or not. Review the

commands in the following demonstration; descriptions of each entry are

stated in the comments:

When a program exits successfully, it sends an exit code of 0 ; when

unsuccessful it sends an exit code of 1 . To see the exit code of the most

recently run command, run echo $? .

Other examples of sequencing commands are discussed later in this

chapter; for example, sequencing commands in a script can show whether a

script exited successfully or not.

Command Substitution

Command substitution is a way of embedding the result of a command into

an output. There are two methods of embedding a command:

`<command>` or $(<command>) . The backtick, ` , is found on

most keyboards in the top-left corner under the tilde, ~ .

An example of command substitution may be found on line 7 of Figure

13-7. This command could have been written echo "Current time:

`date +%m/%d/%y" "%R`" and the output results in Current

time: 09/30/25 12:15 , for example.

Understanding Shell Script Components

Scripts run a series of commands that are interpreted and executed by a

shell. Scripts are composed of the following:

 Defining the interpreter with #!

 Commenting with #

 Defining variables

 Reading user input

 Using positional parameters

 Using functions

Defining the Interpreter with #!

The first line of a script, also called the shebang line, contains the absolute

path to the command-line interpreter used when executing the script. For

example, line 1 in Figure 13-1 indicates the script will use the Bash shell as

the interpreter. When you define the interpreter, it must be the first line;

otherwise, Linux uses a default interpreter defined by the login account.

Figure 13-1 Shebang

The command chsh -l or cat /etc/shells displays a list of

available command-line interpreters.

Commenting with #

Comments are designed to explain purpose. Once you have specified the

shell interpreter, you’ll want to create a comment that details the purpose of

the script.

Use comments liberally (see Figure 13-2). They are great reminders

when you or another user must troubleshoot or add to a script several weeks

after working with it. For example, when you edit a script, you should

consider creating a comment that contains the date of and reason for the

edit. All comments begin with the # symbol, which tells the interpreter to

ignore all text to the right of the symbol to the end of the line.

Figure 13-2 Comments

Defining Variables

Variables store data. We will consider three variable types:

 string A string variable contains alphanumeric characters.

 integer An integer variable contains numbers that will be used in a

mathematical expression.

 constant A constant variable may not be changed or removed (that is,

unset).

A variable’s type determines how the variable will be used. The variable

type string contains alphanumeric characters and may not be used in

mathematical expressions. The variable type integer contains only

numbers. If a string is supplied as a value for an integer type variable,

the value of the variable becomes 0. The last variable type is a

constant . The variable type constant may be neither changed nor

deleted.

The Bash interpreter does not assign a variable type when one is created.

Bash considers a variable a string if its content contains an

alphanumeric value. If the variable contains numbers, Bash will allow the

variable to be used in arithmetic expressions.

The declare command enables you to assign a variable type to a

variable. For example, the command declare flower=rose creates a

local string variable named flower and assigns it a value of rose .

To view the properties of a variable, execute the command declare -p

<variable_name> .

You can use the command echo $flower to display the content of a

variable. The declare -p command is more efficient because it will

display any attributes assigned to the variable as well as the content. To

create a variable of type integer , execute declare -i

<var_name>=<value> .

Let’s look at the difference between declaring a variable type and not

declaring a variable type. In Figure 13-3 lines 1 and 5, we have assigned

numerical values of 100 and 110 , respectively, to the variable sum . On

line 9, we assign the variable sum a value of Fred .

Figure 13-3 Bash sum

In line 1 in Figure 13-4, we use the declare command to set the

variable sum to type integer . On line 4 we change the value of the

variable to 110 . On line 7 we change the value of the variable to Fred .

Since the variable sum is assigned an integer type and we changed

the value to a string , the value of the variable is changed to 0 .

Figure 13-4 Assigning a variable type

Reading User Input

There are times when you need to prompt a user for a response and use the

response in a script. The read command reads user input and assigns the

value of the input to a variable specified by the argument in the read

statement. If no variable name is supplied, the default variable REPLY is

used.

In Figure 13-5, lines 1–7 contain the script read_script.bash ,

and lines 10–12 show the script executing.

Figure 13-5 Using the read command

Line 4 of the script requests user input but does not specify a variable;

therefore, the user’s first name will be stored to the variable REPLY . Line

5 assigns the user’s input to the variable lname .

You can use the -t option to limit the time a user has to respond. The

command echo -n "Enter your name: " ; read -t 5

allows the user five seconds to reply or the script will terminate.

Using Positional Parameters

A command-line script can have up to nine arguments or positions, all of

which can be identified numerically based on their position. For example, if

you run

fred will save as argument $1 , george as argument $2 , and

andrew as argument $3 . Running the command echo $2 displays

george .

Let’s modify the read script by using positional parameters. Notice in

Figure 13-6 line 3 the script uses the echo command to display the first

and second arguments of the command line.

Figure 13-6 Positional parameters in a script

Additional scripting information may be found by using parameter codes

detailed in Table 13-2. Remember the $ character is a metacharacter that

may be interpreted as “the value of.” Running echo $* displays all of

the arguments, that is, fred george andrew . Running $# displays

the number of arguments, or 3 .

Table 13-2 Additional Parameter Shortcuts

Using Functions

A function is a named section of a program that contains a series of

commands designed to perform a specific task. Rather than writing the

same code over and over, you can create a function and then have the script

call (execute) the function.

A function is defined using () and { } as follows:

Figure 13-7 displays the script function_script.bash . Lines 5–

10 in Figure 13-7 define the function timestamp , which is called on

lines 15 and 23.

Figure 13-7 Example of a function in a script

Using Control Operators

Control operators change the flow of a script. In scripting, control operators

are used to form test conditions and looping structures. In this section you

will learn about

 Expression operators

 Testing with conditionals

 Using looping structures

Expression Operators

An expression uses operators to evaluate a condition and determine if the

condition is true, which is exit status code 0 , or false, exit status code non-

zero. Expression operators are available for text strings and integers.

String Operators

String operators are used by expressions to test strings (see Table 13-3). The

comparison is based on the ASCII character set.

Table 13-3 String Operators

NOTE The left and right brackets, [] , shown in the descriptions of

Table 13-3, are the test command alternative, discussed later in

this chapter.

Relationship Operators

Relationship operators are traditionally used for integers. Table 13-4

displays some relationship operators.

Images

Table 13-4 Relationship Operators

NOTE The left and right double parentheses, (()) , shown in the

descriptions of Table 13-4, are the test command for integers, discussed

later in the chapter.

Arithmetic Operators

With an arithmetic expression, you use one of the arithmetic operators

shown in Table 13-5.

Images

Table 13-5 Arithmetic Operators

Boolean Operators

Boolean operators are used to join multiple expressions. In line 7 of Figure

13-8, we use the operator -a , the AND Boolean, to specify two conditions

that must be true to make the expression true. Some of the Boolean

operators are displayed in Table 13-6.

Images

Figure 13-8 Using Boolean operators

Images

Table 13-6 Boolean Operators

File Test Operators

File test operators (see Table 13-7) are used to test the properties of files.

Permission and ownership tests are based on the user executing the script.

Images

Table 13-7 File Test Operators

Figure 13-9 illustrates the script

file_test_operator_script.bash , which contains an example

of the file test expressions.

Images

Figure 13-9 file_test_operator_script.bash

Testing with Conditionals

Conditionals are used to determine the flow of a script.

The test Command

The test command is a shell built in that allows you to evaluate

conditions using the syntax test <expression> . Executing the

command test $EUID -eq 0;echo $? on the command line would

indicate if your effective user ID is 0 . This expression could also be

written as [$EUID -eq 0];echo $? .

NOTE When using the left and right brackets as the test command,

remember to include a space after the left bracket and before the right

bracket because a space is required after a command.

The test command may also be applied in scripts. The script

test_script.bash , shown in Figure 13-10, displays an example of

the test command.

Images

Figure 13-10 A test command script

if then else Statements

The if statement expands the use of the test command by allowing us

to direct the flow of the script based on the exit status of the test

statement. If the test condition evaluates to true, or exit status 0 , the

command or commands directly under the test statement are executed.

If the test condition evaluates to false, or exit status non-zero, one of two

flow control elements may be used. The else statement indicates the

commands to be executed if the original test condition is true. The elif

statement opens another test condition. All if statements end in if spelled

backwards, or fi , as shown here:

Images

Figure 13-11, which shows if_then_script_1.bash , and Figure

13-12, which shows multi-user_script.bash , illustrate examples

using if , else , and elif .

Images

Figure 13-11 Sample if_then_test_script_1.bash

Images

Figure 13-12 if then else example

NOTE For a closer view of Figure 13-11 and other selected images from

this chapter, download the full-resolution images from the online content

for this book.

case Statements

Using case is a more efficient way of making choices as opposed to

several nested if statements. It is similar to the JavaScript or C language

switch statement, using the first argument or expression of the

command line to determine what it will do.

A case statement is broken into stanzas, where each selection ends in

;; , and has the following structure ending in case spelled backwards, or

esac :

Images

The case statement examines the input argument against the string

that begins a stanza. If the string matches, that stanza is executed. Notice

that the very last stanza in Figure 13-13 (script case_script.bash ,

line 13) begins with *) . This entry is used to handle any user entry that

does not match any of the strings in the case statement. Figure 13-14

shows the results of using a case statement.

Images

Figure 13-13 Sample case statement

Images

Figure 13-14 case script output

Using Looping Structures

The if/then/else and case structures are called branching

structures. Depending on how a condition evaluates, the script branches in

one direction or another. You can also use looping control structures within

a shell script. Looping structures come in three varieties: while loop,

until loop, and for loop.

The while Loop

A while loop executes over and over until a specified condition is no

longer true. The structure of a while loop is as follows:

Images

A while loop will keep processing over and over until the condition

evaluates to false. Figure 13-15 shows while_loop_script.bash

and illustrates the use of a while loop.

Images

Figure 13-15 The while loop

The until Loop

In addition to a while loop, you can also use an until loop in your

script. It works in the opposite manner of the while loop. An until

loop runs over and over as long as the condition is false. The structure for

an until loop is as follows:

Images

NOTE The command bash -x <script_name> starts a script’s

debug mode.

The for Loop

You can also use a for loop, which operates in a different manner than

until and while loops. The until and while loops keep looping

indefinitely until the specified condition is met. A for loop, on the other

hand, loops a specific number of times. The structure for the for loop is

as follows:

Images

It is very common to use the seq command within a for loop to

create the sequence of numbers to determine how many times it will loop.

There are three options for creating a number sequence with seq :

 If you specify a single value, the sequence starts at 1, increments by one,

and ends at the specified value.

 If you specify two values, the sequence starts at the first value, increments

by one, and ends at the second value.

 If you specify three values, the sequence starts at the first value, increments

by the second value, and ends at the third value.

An example of a for loop script using seq is shown in Figure 13-16

(for_loop_seq.bash script).

Images

Figure 13-16 for_loop_seq.bash script using seq

You may also see scripts that use a different sequence notation. For

example, {0..10..1} is the same as seq 0 1 10 . Figure 13-17

(for_loop_new_sequence.bash script) illustrates the use of

{0..10..1} .

Images

Figure 13-17 for loop using { } for sequence

Images

EXAM TIP Make certain to have a good understanding of while loops,

if statements, and case statements for CompTIA Linux+ exam

scenario questions.

Exercise 13-1: Creating a Basic Shell Script

For Exercise 13-1, use the image provided with the book. Log on as user

root using the password password . I have supplied the scripts used in

this chapter in the directory /LABS/Chapter_13/source and

duplicated the scripts in /LABS/Chapter_13/work .

Images

VIDEO Please watch the Exercise 13-1 video for a demonstration on how

to perform this task.

Follow these steps:

 Log in as student1 with password student1 . Make sure you are in

the home directory by typing the cd command.

 Copy the chooser.bash script to your home directory, as follows:

cp /LABS/Chapter_13/source/chooser.bash

chooser.bash

 Review the chooser.bash source code, and run the program as

follows:

more chooser.bash

./chooser.bash

Enter Ctrl-C to exit the script.

 Use vi or gedit to update the script with new features; for example:

Execute the vi chooser.bash command.

 Add an option that shuts down the script using q or Q .

Add a fourth option that will display the date and time.

 Change the while line from [] to the test command.

Change option 2 to run the top command

 View the solutions to Step 4 by running the following:

less /LABS/Chapter_13/work/chooser.bash

 Add any other features you desire. When you test the script, make certain to

test based on the objectives you outlined before starting to write the script.

Enjoy!

Processing Text Streams

When processing text streams within a script or piping output at the shell

prompt, you might need to filter the output of one command so that only

certain portions of the text stream are actually passed along to the stdin of

the next command. You can use a variety of tools to do this. In this part of

the chapter, we’ll look at using the following commands:

Images

Let’s begin by looking at the tr command.

The tr Command

The tr (translate) command is used to change or translate characters. The

tr command accepts input from a command via an unnamed pipe, like so:

Images

Figure 13-18 shows how you can translate lowercase letters to uppercase

letters.

Images

Figure 13-18 Using tr to translate lowercase to uppercase

The tr command also assists with converting a Windows text file to a

Linux text file. Lines in Windows text files end with a return and newline,

like so: \r\n . Linux text files just end with a newline, \n . So that the

Windows text file operates properly on a Linux system, the \r must be

removed. This is done with tr -d option to delete a character as follows:

Images

The resulting linuxfile.txt file can be viewed properly on a

Linux system with cat , less , more , or vi . There is also a

command called dos2unix that performs the same function. The

command unix2dos sets up a Linux text file to work on Windows.

Next, Figure 13-19 illustrates how to use the tr command to translate

the letter r to 1 , o to 2 , and t to 3 .

Images

Figure 13-19 Using tr to translate letters to numbers

The tr command can use the -s option to squeeze or replace

multiple occurrences. In Figure 13-20, we use the squeeze option to remove

multiple spaces between fields so there is only one space between fields.

The command who | tr -s " " " " replaces two contiguous

spaces with one.

Images

Figure 13-20 tr squeeze option

The cut Command

The cut command is used to print columns or fields that you specify from

a file to the standard output. Table 13-8 shows options that can be used with

cut .

Images

Table 13-8 cut Command Options

In Figure 13-21, we execute the who command and then use the tr -

s command to remove multiple contiguous spaces so there is only one

space between the fields. The cut command, using a space as a delimiter,

extracts the real username (field one) and time (field 3).

Images

Figure 13-21 Using the cut command to extract fields

The nl Command

The common usage for nl is line numbering. This can be accomplished

by executing the command nl <filename> .

When creating a text document, you can break the document up into

three sections (header, body, and footer) and assign independent numbering

schemes to each section. By default, nl only numbers the body section.

Table 13-9 shows the command-line option and the text file designator

for a document marked up for nl . Figure 13-22 illustrates an example of

dividing a document into sections with nl designators.

Images

Table 13-9 nl Section Designators

Images

Figure 13-22 Document formatted with nl designators

The numbering schemes for each section are applied in the command

line using the designator and one or more of the options shown in Table 13-

10.

Images

Table 13-10 nl Numbering Options

The syntax for a section would be <-h|-b|-f> a .

The command nl -h a -b n -f t -v 20 nltest will start

the numbering of the file nltest at 20 (-v 20) and increment the

numbers by two (-i 2). All lines in the header section will be numbered

(-h a), none of the lines in the body section will be numbered (-b n),

and the footer will not number empty lines (-f t). Figure 13-23 displays

the output of the command.

Images

Figure 13-23 Numbering a document by section

The od Command

The od command converts the contents of a binary file into hex, octal, or

decimal notation to the standard output device. The command is used to

locate changes or unwanted characters in a file.

NOTE The file helloworld.odt can be found on your image in

/LABS/Chapter_13/source .

The syntax for using od is od <options> <filename> . Here

are some of the more commonly used options:

 -b Octal dump

 -d Decimal dump

 -x Hex dump

 -c Character dump

The od command is used by software developers to help reverse

engineer compiled source code and by system administrators to find hidden

characters like tabs or newlines. Next, we need to look at sed and awk .

The sed Command

sed is a data stream editor that reads one line of a file at a time into a

buffer and makes a single change to a line at a time. sed does not change

the content of the edited file. To save changes, you must redirect the output

to a file.

The syntax of a sed command is sed <options> <address>

<expression> . Some sed options are listed in Table 13-11.

Images

Table 13-11 sed Command Options

The command sed '=' /etc/passwd will print the file

/etc/passwd (see Figure 13-24). Each line will be preceded by a line

number.

Images

Figure 13-24 Running sed "=" /etc/passwd

The command sed 1,3p /etc/passwd should print the range of

lines from line 1 through line 3 of the file /etc/passwd . When viewing

the output in Figure 13-25, it looks as if the whole file has been printed.

However, what we are viewing is the pattern buffer.

Images

Figure 13-25 The sed command printing without suppressing pattern

space

To prevent printing the pattern space, you must use the -n option, as

shown in Figure 13-26.

Images

Figure 13-26 The sed command suppressing the pattern space

You can print a number of lines from a starting address. The command

sed -n 3, +3p /etc/passwd will begin printing from the third

line of /etc/passwd and print the next three lines, as shown in Figure

13-27.

Images

Figure 13-27 The sed command printing three consecutive lines

sed will only make one edit per line, as shown in Figure 13-28. The

command sed -n 's/root/fred/p' /etc/passwd will search

each line for the first instance of the string root and change the string to

fred .

Images

Figure 13-28 Using sed to search and replace a single instance of a

string per line

In order to make multiple edits on a single line, add the g option to the

end of the sed expression like so: sed -n 's/root/fred/gp'

/etc/passwd . You can view the output in Figure 13-29.

Images

Figure 13-29 Using sed to search and replace multiple instances of a

string per line

You can use regular expressions as part of your search expression. The

command sed -n 's/^root/fred/p' /etc/passwd will search

for the string root at the beginning of the line in /etc/passwd and

change it to fred , as shown in Figure 13-30.

Images

Figure 13-30 Using sed with regular expressions

We will use the file sedawk for the next few examples. Figure 13-31

displays the contents of sedawk .

Images

Figure 13-31 The sedawk file

The command cat sedawk | sed '/Jane/s/14/16' will

search each line of the file sedawk for the string Jane . When it finds a

line with the string Jane , it will search for the string 14 and replace it

with the string 16 (see Figure 13-32).

Images

Figure 13-32 Using sed to search for a string in a line

The command cat sedawk | sed 3,5s/Algebra/German

will search lines 3–5 for the string Algebra and replace it with the string

German , as shown in Figure 13-33.

Images

Figure 13-33 Using sed to search a range of lines

We can define multiple expressions. The command

Images

will search the file sedawk and replace the name Jane with

Margaret and the name Bruce with Bill (see Figure 13-34).

Images

Figure 13-34 Using sed to make multiple edits

To insert a line, use the i option. The command sed '3 i \This

is an insert test' as shown in Figure 13-35 will insert the text

“ This is an insert test ” as the new line 3.

Images

Figure 13-35 Using sed to insert a line

To append a line, use the a option. The command sed '3 a \This

is an append test' (see Figure 13-36) will add the text “ This

is an append test ” after line 3.

Images

Figure 13-36 Using sed to append a line

To delete a line, use the d option. The command cat sedawk |

sed 3,5d (see Figure 13-37) will delete lines 3–5 of the file sedawk .

Remember, sed will not change the file but instead displays the changes

that would occur. To save the change, redirect the output to a file.

Images

Figure 13-37 Using sed to delete a range of lines

The awk Command

awk is an application used to process text files. The GNU implementation

of awk is gawk . Either command, gawk or awk , may be executed.

awk processes a single line at a time. It treats each line as a record that is

divided into fields. Fields are separated by a delimiter. The default delimiter

is a space or tab.

Table 13-12 lists some awk options.

Images

Table 13-12 awk Options

awk also has a set of a built-in variables. A partial list of these

variables is shown in Table 13-13.

Images

Table 13-13 awk Variables

awk uses the same escape sequences to do character insertions as the

echo command. Some of these are listed in Table 13-14.

Images

Table 13-14 Character Insertion Codes

Filtering Command Output

The next several commands use awk or gawk to filter the output of a

command.

Most commands use a whitespace character to separate the columns of

output. Each column, or field, is assigned a position number from 1 to 9 .

We will use the position number to reference a specific output field.

In the following example, the output of the ls -l command is filtered

by awk to display the first field of the output, or permissions, and the

ninth field of the output, the filename.

Images

To make the output more readable, let’s add spaces between the fields by

adding several spaces surrounded by double quotes.

Images

In the following illustration, we replace the spaces with a tab.

Images

Finally, we add descriptive text for clarity.

Images

Filtering the Content of a File

In the following example, we extract information from the file

/etc/passwd and create formatted output. Notice the -F option is

used to specify the colon (:) character as a delimiter.

Images

The remainder of the examples use the file sedawk as a data source.

Images

NOTE The sedawk file is available in the directory

/LABS/Chapter_13/source .

In the following example, we are filtering for all female students ($2

=="F") who have grades greater than 80 ($5 > 80).

Images

In the next example, we are filtering for all students whose name begins

with an A or B .

Images

Using a Script File

You can create awk script files and apply them to data. Figure 13-38

displays a script file called sedawkscript .

Images

Figure 13-38 The file sedawkscript

NOTE The file sedawkscript is available in the directory

/LABS/Chapter_13/source .

The script file is divided into three sections. Each section is enclosed

within curly braces, { } . The BEGIN section is used to declare

variables. The next section is a set of commands to process, and the END

section is used to create a report.

The command

Images

will sort the file sedawk by class and grade and then filter the result

through the awk script, sedawkscript (see Figure 13-39). The report

will produce the list of student grades, total number of grades reported, and

the average grade.

Images

Figure 13-39 Using sedawkscript

Images

EXAM TIP Make certain to have a good understanding of tr , sed ,

and awk for CompTIA Linux+ exam questions.

The sort Command

The sort command is used to sort a field or fields in output. Fields are

sorted in the order they are presented on the command line. Table 13-15

describes some of the sort command’s options.

Images

Table 13-15 The sort Command Options

The command ls -l | sort -k 5,5n -k 9,9 (see Figure 13-

40) will sort the output of the ls -l command on the file’s size and then

the file’s name.

Images

Figure 13-40 Using ls with sort

The split Command

The split command will split a large file into smaller pieces. Options

used with the split command are explained in Table 13-16. The syntax

for the split command is as follows:

Images

Table 13-16 The split Command Options

Images

The standard naming convention for the files created by split are

xaa , xab , xac , and so on. The output prefix would replace the x with

the argument specified in <output_prefix> . For example, if the

<output prefix> argument is set to sp , the output files would be

named spaa , spab , spac , and so on.

The head Command

The command head <filename> will print the first 10 lines of a file.

The command head -<n> <filename> will display the first n lines

of a file.

The tail Command

The command tail<filename> will print the last 10 lines of a file.

The command tail -<n> <filename> will display the last n lines of

a file.

The uniq Command

The uniq command reports or omits repeated lines that are right next to

each other. The syntax is uniq <options> <input> <output> .

You can use the following options with the uniq command:

 -d Prints only duplicate lines

 -u Prints only unique lines

For example, suppose our lastnames file contained duplicate entries:

Images

You could use the uniq lastnames command to remove the

duplicate lines. This is shown in the following example:

Images

Again, the uniq command only works if the duplicate lines are

adjacent to each other. If the text stream you need to work with contains

duplicate lines that are not adjacent, use the sort command to first make

them adjacent, and then pipe the output to the standard input of uniq .

Finally, let’s look at the wc command.

The wc Command

The wc command prints the number of newlines, words, and bytes in a

file. The syntax is wc <options> <filename> . You can use the

following options with the wc command:

 -c Prints the byte counts

 -m Prints the character counts

 -l Prints the newline counts

 -L Prints the length of the longest line

 -w Prints the word counts

For example, to print all counts and totals for the firstnames file,

you would use the wc firstnames command, as shown in this

example:

Images

The output means there were 3 lines, 6 words, and 21 characters.

Let’s practice processing text streams in Exercise 13-2.

Exercise 13-2: Processing Text Streams

For this exercise, use the image supplied with the book. Log on as user

root using the password password .

Here are the steps to follow:

Images

VIDEO Please watch the Exercise 13-2 video for a demonstration on how

to perform this task.

 Use the command cd /LABS/Chapter_13/work to change to the

directory that contains the scripts. Directory /LABS/Chapter_13 also

contains a source directory. Those are originals you can copy to the work

directory in case of an oops.

 To display only the file owner, group owner, file size, and filename, use the

following command:

ls -l | cut -d " " -f3,4,5,9

 Sort the output by file owner and file size:

ls -l | cut -d " " -f3,4,5,9 | sort -k3 -k9n

 Save the output of the command in Step 3 to labfile by executing this

command:

ls -l | cut -d " " -f3,4,5,9 | sort -k3 -k9n

>labfile

 To change the owner name of each file to fred , use the following

command:

sed -n 's/root/fred/p' labfile

 Print the first line of the file labfile to determine its structure:

head -1 labfile

 Use awk to print “The file <filename> is owned by <owner>” using this

command:

awk '{print "The file " $4 " is owned by " $1}'

labfile

Chapter Review

In this chapter, you learned how to create basic shell scripts on a Linux

system. This chapter discussed how to set up control structures, such as if

and case statements, to control the flow of a script, and how to use loops,

such as while , until , and for , to repeat a series of commands for a

specific period.

You also learned how to manipulate text using commands like tr ,

cut , sed , and awk . Shell scripts are text files that contain a variety of

commands that can be used to automate tasks and process information.

Here are some key takeaways from this chapter:

 Bash shell scripts should begin with #!/bin/bash to specify that the

Bash shell should be used to run the script.

 Include a comment, starting with # , at the beginning of each script that

describes what it does.

 You can run shell scripts by using /bin/bash <script_filename>

or by adding the execute permission to the script file.

 You can read user input in a script using read <variable_name> .

 To make a script that branches in two directions, you can use an

if/then/else structure.

 You can use the test command in an if/then/else structure to test

a condition.

 If you want more than two branches in your script, you can use the case

structure.

 With a case structure, you can evaluate multiple conditions and execute a

series of commands that are executed according to which condition is true.

 Looping structures come in three varieties: the while loop, the until

loop, and the for loop.

 A while loop executes over and over until a specified condition is no

longer true.

 An until loop runs over and over as long as the condition is false. As

soon as the condition is true, it stops.

 To loop a specific number of times, you can use a for loop.

 You can process text streams to manipulate and modify text within a script

or within a pipe.

 You can use the following utilities to process a text stream:

 cut

 nl

 od

 sed

 awk

 head

 tail

 sort

 split

 tr

 uniq

 wc

 Command substitution using ` ` or $() allows you to run a command

and have its output pasted back on the command line as an argument for

another command.

Questions

 Which of the following elements must be included at the beginning of every

Bash shell script?

 #Comment

#!/bin/bash

 exit 0

 #begin script

 You’ve created a shell script named myscript in your home directory.

How can you execute it? (Choose two.)

 Enter /bin/bash ~/myscript at the shell prompt.

Enter myscript at the shell prompt.

 Select Computer | Run in the graphical desktop; then enter ~/myscript

and select Run .

 Enter run ~/myscript at the shell prompt.

Enter chmod u+x ~/myscript; then enter ~/myscript at the

shell prompt.

 Which command will create a new variable named TOTAL and set its type

to be integer ?

 variable -i TOTAL

declare -i TOTAL

 declare TOTAL -t integer

 TOTAL=integer

 You need to display the text “ Hello world ” on the screen from within

a shell script. Which command will do this?

 echo "Hello world"

read Hello world

 writeln "Hello world"

 print "Hello world"

 From within a shell script, you need to prompt users to enter their phone

number. You need to assign the value they enter into a variable named

PHONE . Which command will do this?

 read "What is your phone number?" $PHONE

read $PHONE

 read PHONE

 ? "What is your phone number?" PHONE

 Which command can be used from within an if/then/else structure

to evaluate whether or not a specified condition is true?

 eval

==

 test

 <>

 Which command will evaluate to true within an if/then/else

structure in a shell script if the variable num1 is less than the variable

num2 ?

 eval num1 < num2

test num1 < num2

 test num1 -lt num2

 test "num1" != "num2"

 In a shell script, you need to prompt the user to select from one of seven

different options presented with the echo command. Which control

structure would best evaluate the user’s input and run the appropriate set of

commands?

 A while loop

A for loop

 An until loop

 if/then/else

case

 Which control structure will keep processing over and over until a specified

condition evaluates to false?

 A while loop

A for loop

 An until loop

 if/then/else

case

 Which control structures are considered to be branching structures?

(Choose two.)

 A while loop

A for loop

 An until loop

 if/then/else

case

 Which control structure will keep processing over and over as long as the

specified condition evaluates to false?

 A while loop

A for loop

 An until loop

 if/then/else

case

 Which control structure will process a specified number of times?

 A while loop

A for loop

 An until loop

 if/then/else

case

 Which command will delete the character n from the file called

file.txt ?

 tr -d n < file.txt

tr -d n file.txt

 tr --delete n > file.txt

 tr --delete n file.txt

 Which command can be used to print columns or fields that you specify

from a file to the standard output using the tab character as a delimiter?

 cut

pr

 fmt

 sort

 The first column of the file logfile.txt contains last names. Which

commands will sort the file by last names? (Choose two.)

 sort < logfile.txt

sort logfile.txt

 sort < logfile.txt -o "screen"

 sort < logfile.txt > screen

sort -n logfile.txt

cat /var/log/messages | awk 'syslog {print 6,7,8}'

 You need to search for and replace the word June with the word July

in a file named proj_sched.txt in your home directory and send the

output to a new file named new_proj_sched.txt . Which command

will do this?

 cat ~/proj_sched.txt | sed s/June/July/

cat ~/proj_sched.txt | awk s/June/July/

 cat ~/proj_sched.txt | awk s/June/July/ 1>

new_proj_sched.txt

 cat ~/proj_sched.txt | sed s/June/July/ 1>

new_proj_sched.txt

Answers

 B. The #!/bin/bash element must be included at the beginning of

every Bash shell script.

 A, E. You can enter /bin/bash ~/myscript or chmod u+x

~/myscript to make the script execute.

 B. The declare -i TOTAL command will create the TOTAL variable

and type it as integer .

 A. The echo "Hello world" command will display the text

“ Hello world ” on the screen from within a shell script.

 C. The read PHONE command in a shell script will assign the value

entered by the user into a variable named $PHONE .

 C. The test command can be used from within an if/then/else

structure to evaluate whether or not a specified condition is true.

 C. The test num1 -lt num2 command will evaluate to true within

an if/then/else structure if the variable num1 is less than the

variable num2 .

 E. The case structure is the best option presented to evaluate the user’s

choice of multiple selections and run the appropriate set of commands as a

result.

 A. A while loop will keep processing over and over until the specified

condition evaluates to false.

 D, E. The if/then/else and case structures are considered to be

branching structures because they branch the script in one of several

directions based on how a specified condition evaluates.

 C. The until loop control structure will keep processing over and over

as long as the specified condition evaluates to false.

 B. The for loop control structure will process a specified number of

times.

 A. The tr -d n < file.txt command will remove all cases of the

letter n . (The command tr –delete n < file.txt would also

work.)

 A. The cut command can be used to print columns or fields that you

specify from a file to the standard output using the tab character as a

delimiter.

 A, B. The sort < logfile.txt command and the sort

logfile.txt command will both send the contents of the

logfile.txt file to the sort command to sort its lines alphabetically

and display them on the screen.

 D. The cat ~/proj_sched.txt | sed s/June/July/ 1>

new_proj_sched.txt command will search the proj_sched.txt

file for the word June and replace all instances with the word July .

The output from sed will be written to a file named

new_proj_sched.txt .

CHAPTER 14

Managing Linux Network Settings

In this chapter, you will learn about

• Understanding IP networks

• Configuring network addressing parameters

• Troubleshooting network problems

• Understanding network-based filesystems

I love robotics because of the connections I can make.

—Carlotta Berry, Rose-Hulman Institute of Technology

Up to this point in the book, we have focused on configuring and using
Linux as a stand-alone computer system. However, Linux can also be
configured to function in a networked environment. Unlike many operating
systems, Linux was designed from the ground up with networking in mind.

One of Linux’s greatest features is that most any distribution can be
configured to fill a wide variety of roles on the network—all for little or no
cost. For example, one can configure a Linux system as any of the
following:

• A networked workstation

• A Secure Shell (SSH), file, and print server

• A database server

• A Dynamic Host Configuration Protocol (DHCP) server

• A Domain Name System (DNS) name server

• A web and Network Time Protocol (NTP) server

• An e-mail and virtual private networking (VPN) server

• A load balancing, clustering, or containers server

• A domain controller, logging, monitoring, and authentication server

• A Lightweight Directory Access Protocol (LDAP) directory server

• A gateway router and proxy server

• A packet-filtering, stateful, or application-level firewall

• A certificate authority (CA) server

With most other operating systems, you would have to pay lots of money to
get these additional functionalities. In this chapter, we focus on enabling
basic networking on your Linux system as well as how to set up a variety
of Linux services.

Images

EXAM TIP As a candidate, you should be very comfortable with Linux
networking basics for the CompTIA Linux+ exam. Be sure to understand
how Internet Protocol (IP) addressing works in IPv4 and IPv6.

Understanding IP Networks

For the CompTIA Linux+ exam, you need to be proficient with the IP
protocol (both versions 4 and 6) and know how to configure the protocol
such that a system can participate on the network. A brief review of IPv4
addressing and protocols follow:

• What is a protocol?

• How IPv4 addresses work

• How IPv4 subnet masks work

What Is a Protocol?

So, what exactly is a protocol? Strictly speaking, a protocol is a set of
rules, and, in the context of networking, a protocol is the set of rules that
governs communication between two systems. A good analogy for a
protocol is a human language. Before two people can communicate, they
must speak the same language; otherwise, no information can be
transferred between them.

For the CompTIA Linux+ exam, you need to be familiar with the IP
protocol, which is the networking protocol used on the Internet. IP works in
conjunction with other protocols, such as the Transmission Control
Protocol (TCP), the User Datagram Protocol (UDP), and the Internet
Control Message Protocol (ICMP), to be discussed shortly.

Images

NOTE The two versions of the IP protocol are called IPv4 and IPv6. We
are going to discuss IPv4 first in this chapter and explore IPv6 later in the
chapter.

To understand the TCP/IP protocol, you need to understand the Open
Systems Interconnection (OSI) reference model. The OSI reference model
was designed by delegates from major computer and telecom companies
back in 1983. The goal was to design a network communications model
that was modular so that products from different vendors could
interoperate. Prior to this, networking solutions tended to be proprietary,
forcing implementers to purchase all of their components from the same
vendor. By defining the OSI reference model, the industry created a
standard that allows administrators to pick and choose components from a
variety of vendors.

The OSI reference model divides the communication process between two
hosts into seven layers, as shown in Figure 14-1.

Images

Figure 14-1 The OSI reference model

These layers break down the overall communication process into specific
tasks. Information flows down through the layers on the sending system
and then is transmitted on the network medium. The information then flows
up the layers on the receiving side.

The OSI reference model layers are defined as follows:

• Layer 1: Physical Defines electrical formats between hosts. Devices
include cables and hubs.

• Layer 2: Data Link Defines rules to access the Physical layer.
Information received is organized into datagrams. Devices include
switches and bridges.

• Layer 3: Network Enables the routing of the data to outside networks.
Both IP and ICMP operate at this layer. Devices include routers and
stateless firewalls.

• Layer 4: Transport Ensures packet integrity and reliability. TCP and
UDP operate at this layer. Devices include packet-filtering firewalls.

• Layer 5: Session Responsible for maintaining connections between
applications called sessions. This is how packets know their browser tab
destination when five tabs are open.

• Layer 6: Presentation Responsible for ensuring that data is formatted
and presented correctly. Most compression and encryption occur here.

• Layer 7: Application Where “apps” or applications such as FTP,
SMTP, SSH, and Telnet operate. Devices include Application layer
firewalls.

The Internet Protocol itself is used only to make sure each packet arrives at
the destination system and to reassemble and resequence it when it arrives
at the destination system. This is shown in Figure 14-2.

Images

Figure 14-2 Transferring data with the IP protocol

TCP is one of the two original components of the IP protocol suite and
provides a guaranteed connection, whereas UDP is considered
connectionless because verification of packets reaching their final
destination is not done.

Using TCP is like using signature confirmation with a shipping company.
When one sends a package, the shipper requires the receiver to sign for the
package, allowing the sender to verify that the package was received
correctly.

TCP is used by applications that require a high degree of data integrity,
including web servers, e-mail servers, FTP servers, and so on. With UDP,
packets are sent unacknowledged. It assumes that error checking and
correction are either not necessary or will be performed by the application,
thus avoiding the processing overhead of TCP.

UDP is similar to sending a postcard through the mail. Essentially, the
sender assumes that the mail carrier is reasonably reliable and that the data
on the postcard is not important enough to require the receiver to sign for it.
Some applications that make use of UDP include the following:

• Streaming audio and video

• Voice over IP (VoIP)

ICMP is another core protocol in the IP suite. It differs in purpose from
TCP and UDP, which are transport protocols. The primary role of ICMP is
to test and verify network communications between hosts. Commands that
use the ICMP protocol are ping and traceroute.

For example, to test network connectivity, the ping utility will send ICMP
echo request packets to a remote host. If the host receives them, it will
respond to the sender, which verifies a successful connection. The
traceroute utility is used to trace the router used by a packet from source
to destination.

For the CompTIA Linux+ exam, you are required to understand the concept
of IP ports, provided at the Transport layer. Ports allow a single host with a

single IP address to provide multiple network services. Each service uses
the same IP address but operates using a different port number.

For example, assume a network server with an IP address of 192.168.1.1.
This system could be configured as both a web server and an FTP server,
running at the same time. Each service will listen for requests. The web
server listens on port 80, and the FTP server listens on ports 20 and 21.
Therefore, requests sent to port 80 are handled by the web service, and data
sent to ports 20 and 21 is handled by the FTP daemon.

Images

NOTE The FTP service is somewhat unique in that it uses two ports. One
is for the control connection (port 21) and the other (port 20) is for
transferring data.

Port numbers can range from 0 to 65536. The way these ports are used is
regulated by the Internet Corporation for Assigned Names and Numbers
(ICANN). IP ports are lumped into three different categories:

• Well-known ports Reserved for specific services, well-known ports are
those numbered from 0 to 1023. Here are some examples:

• Ports 20 and 21: FTP

• Port 22: Secure Shell (SSH, SCP, SFTP, STelnet)

• Port 23: Telnet

• Port 25: SMTP

• Port 53: DNS

• Port 80: HTTP

• Port 110: POP3

• Port 123: NTP (time synchronization)

• Ports 137, 138, and 139: NetBIOS

• Port 143: IMAP

• Port 389: LDAP

• Port 443: HTTPS

• Port 514: Syslog remote logging

• Registered ports ICANN has reserved ports 1024 through 49151 for
special implementations that organizations can apply for.

• Dynamic ports Dynamic ports are also called private ports. Ports
49152 through 65535 are designated as dynamic ports. They are available
for use by any network service. They are frequently used by network
services that need to establish a temporary connection.

How IPv4 Addresses Work

Every host on an IP-based network must have a unique IP address. An IP
address is a Network layer (3) address that is logically assigned to a
network host. Because the IP address is a logical address, it is not
permanent.

The IP address is different from the MAC address. The MAC address is a
Data Link layer (2) hardware address that is burned into a ROM chip on
every network board sold in the world. The MAC address is hard-coded
and cannot be changed; theoretically, every MAC address in the world is
unique.

Images

NOTE The Address Resolution Protocol (ARP) is used to map IP
addresses to MAC addresses. ARP makes local area networks (LANs)
faster. To view the current ARP table on your Linux system, simply run arp
-a.

An IP address consists of four numbers, separated by periods. In decimal
notation, each octet must be between 0 and 255. Here are some examples of
valid IP addresses:

• 12.34.181.78

• 192.168.1.1

• 246.250.3.8

Images

NOTE IPv4 addresses are sometimes called “dotted quad” addresses.
Each number in the address is actually an 8-bit binary number called an
octet. Because each octet is a binary number, it can be represented as 0’s
and 1’s. For example, the address 192.168.1.1 can be represented in binary
form as follows: 11000000.10101000.00000001.00000001

The fastest way to convert from decimal to binary, and vice versa, for the
exam is to understand the decimal value of each binary field, as shown in
Table 14-1. Note the only values that become part of the conversion to
decimal are those with a 1. Once all the decimal values are determined,
take the sum for the final conversion result. For example, use the table to
determine the value of each bit in the binary number 10101011.

Images

Table 14-1 Binary-to-Decimal Conversion Calculator

Therefore, 10101011 = 128 + 0 + 32 + 0 + 8 + 0 + 2 + 1 = 179.

Images

EXAM TIP In the real world, there are subnet calculators to perform
these conversions, but you are not allowed to bring a calculator into the
exam room.

Some IP addresses are reserved and cannot be assigned to a host. For
example, the last octet in a host IP address cannot be the lowest subnet

value, or 0. This is reserved for the address of the network segment itself
that the host resides on. For example, the default network address for the
host assigned an IP address of 192.168.1.1 is 192.168.1.0.

In addition, the last octet of an IP address assigned to a host cannot be the
highest subnet value, or 255. This is reserved for sending a broadcast to all
hosts on the segment. In the preceding example, the default broadcast
address for a host with an IP address of 192.168.1.1 would be
192.168.1.255.

Every host on an IP-based network must have a unique IP address assigned
to it. If the host resides on a public network, such as the Internet, it must
use a globally unique IP address obtained from the IANA. Once an IP
address is assigned, no one else in the world can use it on a public network.

This introduces an important problem with IP version 4. The 32-bit
addressing standard allows for a maximum of 4,294,967,296 unique
addresses. This seemed like a lot of addresses when IPv4 was originally
defined. However, today the number of addresses is depleted.

One method to mitigate the shortage of IPv4 addresses is to utilize network
address translation (NAT). A NAT router can present a single registered IP
address to a public network and hide thousands of private IP addresses on
the network behind it. This is shown in Figure 14-3.

Images

Figure 14-3 Using a NAT router to separate public and private networks

Within each class of IP address are blocks of addresses called private or
reserved IP addresses. These addresses can be used by anyone who wants
to use them. This allows administrators to use private addresses on their
local network and still be able to connect to public networks, such as the
Internet. All traffic from the private network appears to be originating from
the registered IP address configured on the public side of the NAT router.

Here are the private IP address ranges:

• 10.0.0.0–10.255.255.255 (Class A)

• 172.16.0.0–172.31.255.255 (Class B)

• 192.168.0.0–192.168.255.255 (Class C)

These are nonroutable addresses, meaning that if you try to use them on a
public network, such as the Internet, routers will not forward data to or
from them. This allows anyone in the world to use these private IP address
ranges without worrying about conflicts.

How IPv4 Subnet Masks Work

When configuring a system with an IP address, you must also assign a
subnet mask. This parameter defines the network a system belongs to. The
IP address is divided into two parts:

• Network address

• Node or host address

Part of an IPv4 address is used to identify the network the host resides on.
The rest identifies a specific host (node) on the network. The key point to
remember is that every system on the same network segment must have
exactly the same numbers in the network portion of the address. However,
they each must have a unique node portion. This is shown in Figure 14-4.

Images

Figure 14-4 Network vs. node in an IP address

How much of the address is used for the network and how much is used for
the node is defined by the subnet mask. Default subnet masks are divided
into three classes, as defined next, in decimal and binary forms:

Images

Subnet mask octets with 1’s identify the network portion of the IP address,
and the 0’s define the host portion. For example, an IP address of
192.168.1.1 with a mask of 255.255.255.0 specifies a subnet where the first
three octets of the address are the network and the last octet is the node.
This is shown in Figure 14-5.

Images

Figure 14-5 Using the subnet mask to define the network and node
portions of an IP address

IP addresses are divided into five different classes, with their own default
subnet masks. You only need to be concerned with the first three address
classes:

• Class A The decimal value of the first octet must be between 1 and 126.
In a Class A address, the first octet is the network address and the last
three octets are the node. Class A allows only 126 total possible networks,
but offers 16.7 million possible node addresses.

• Class B The decimal value of the first octet must be between 128 and
191. In a Class B address, the first two octets are the network and the last
two octets are the node address. Using Class B addressing allows 16,384
possible networks with 65,534 possible nodes each.

• Class C The decimal value of the first octet must be between 192 and
223. In a Class C address, the first three octets are the network address,
while the last octet is the node address. A huge number of Class C
networks are available at 2,097,152. However, only 254 hosts can exist on
any given Class C network.

Images

EXAM TIP To calculate the number of hosts per network, count the
number of 0’s, or Z, in the subnet. For example, there are eight 0’s in a
Class C network. The number of hosts per network, or N, is defined as
follows:

N = 2Z – 2

or

254 = 28 – 2 = 256 – 1 (the network address) – 1 (the broadcast address)

Subnet masks are often noted using a type of shorthand called CIDR
notation. This is done by adding a slash (/) and the number of 1’s used in
the mask after the IP address (for example, 192.168.1.1/24). The /24
parameter indicates 24 bits are used for the subnet mask, which in longhand
is 192.168.1.1/11111111.11111111.1111111.00000000, or in decimal is
192.168.1.1/255.255.255.0.

Default subnet masks are not required; for instance, you could define a
mask of 255.255.255.0 for a Class A address or anything in between. For
example, a subnet mask of 11111111.11111111.11111100.00000000, or a
CIDR of 22, or 255.255.252.0 in decimal is allowed. This results in N = 210

– 2, or 1,022 hosts per network. Network administrators perform this type
of subnetting because debugging a 1,000-host network is much easier than
troubleshooting a network of 16 million hosts.

In this case, for a 10.0.0.0 network, the first subnet would range from

Images

or in decimal from 10.0.0.0, the network ID, through 10.0.3.255, the
broadcast address. Addresses from 10.0.0.1 through 10.0.3.254 are host
addresses for the first subnet.

The next subnet would range from

Images

or in decimal from 10.0.4.0 (the network ID) through 10.0.7.255 (the
broadcast address). Addresses from 10.0.4.1 through 10.0.7.254 are host
addresses for the second subnet.

The network administrator would continue assigning host addresses until
they run out of systems or usable IP addresses. In the real world, subnetting
calculators exist to complete this process. Two additional examples are
shown in Table 14-2 for a subnet of 10.0.0.0/22.

Images

Table 14-2 Creating Subnets with a 10-bit Subnet Mask

Troubleshooting Subnet Network Configuration Issues

An important point to remember is that for two hosts on the same network
segment to communicate, they need to have exactly the same network
address, which means they must have exactly the same subnet mask. For
example, suppose you have three systems, as shown in Figure 14-6.

Images

Figure 14-6 Hosts with wrong subnet masks

Host 1 and Host 2 both have the exact same network address and subnet
mask, and therefore can communicate on the IP network segment.
However, Host 3 uses a subnet mask of 255.255.252.0 instead of
255.255.255.0. Therefore, Host 3 has a different network address than Host
1 and Host 2 and will not be able to communicate with them without the
use of a network router.

To fix this, change the netmask on Host 3 to match those of Host 1 and
Host 2. In other words, modify the current subnet mask from 255.255.252.0
to 255.255.255.0, and then all three computers can communicate.

Configuring Network Addressing Parameters

Installing an Ethernet network interface in your system involves
completing the following tasks:

• Assigning NIC nomenclature

• Configuring IPv4 parameters

• Configuring routing parameters

• Configuring name resolver settings

• Configuring IPv6

Assigning NIC Nomenclature

Linux’s systemd uses predictable network interface names. One key benefit
is that specific aliases can be permanently assigned to specific network
interfaces. For example, an onboard network adapter is assigned the index
number provided by the BIOS to construct the alias. A commonly assigned
alias created using this parameter is eno1, where

• en is the Ethernet interface

• o1 is the onboard device index number (in this case, device number 1)

At this point, the network interface is loaded and active.

Configuring IPv4 Parameters

Network interfaces can be configured using either a static IP address or a
dynamic IP address. Table 14-3 highlights the advantages and
disadvantages of each method.

Images

Table 14-3 IP Address Assignment Options

To statically assign IP address parameters to a Linux system, use the
ifconfig command or the newer ip command. Running ifconfig without
any options displays the current status of all network interfaces in the
system, as shown in Figure 14-7.

Images

Figure 14-7 Using ifconfig to view network interface information

Images

EXAM TIP ifconfig lists multiple interfaces, not just one. The extra
interface labeled lo is the loopback interface and is usually assigned a
special IP address of 127.0.0.1. This is a virtual interface, not an actual
hardware interface. It is used for network testing, internal communications,
diagnostics, and so on.

Notice in Figure 14-7 that two network interfaces are displayed: ens32 and
lo. The ens32 interface is the Ethernet network interface installed in the
system. The lo interface is the local loopback virtual network interface.
This interface is required for many Linux services to run properly.

Another utility you can use to manage IP addressing on a Linux system is
the newer ip command. Practice using this command because it may
supersede ifconfig, route, and others because it can also manage IPv6.
This command is also available on Windows, Chrome, and macOS
computers. To view the current configuration, enter ip addr show at the
shell prompt, as shown here:

Images

Images

Images

EXAM TIP The ethtool command allows administrators to list and alter
the hardware settings of the network card.

Some of the more important parameters include those shown in Table 14-4.

Images

Table 14-4 ip addr show Output

To use the ip command to configure IP addressing parameters, enter ip
addr add <ip_address> dev <interface> at the shell prompt. For

example, to set the IP address assigned to the ens32 network interface to
10.0.0.84, enter the following:

Images

Images

NOTE The actual ip commands allow shortening the options, so

ip address add 10.0.0.84 dev ens32

and even

ip a a 10.0.0.84 dev ens32

are possible ways to run the command and get the same results.

To remove an IP address from an interface, just enter ip addr del
<ip_address> dev <interface> at the shell prompt.

The ip command can also disable and enable a network interface. To
disable an interface, enter ip link set <interface> down at the shell
prompt. To bring a disabled interface back online, enter ip link set
<interface> up at the shell prompt. Also, systemctl can restart the
network interface. To do this, simply enter systemctl restart network
on a Red Hat–class system or systemctl restart networking on a
Debian-class system.

This IP address assignment is not persistent. It will be lost on reboot. To
make it persistent, configure the file ifcfg-ens32 in the
/etc/sysconfig/network-scripts directory. Sample parameters for the
interface are shown here for this CentOS system:

Images

Some other options available in this configuration file are listed in Table
14-5.

Images

Table 14-5 Configuring Persistent Parameters for a Network Interface

The lines for IPADDR, NETMASK, NETWORK, and BROADCAST are not required if
BOOTPROTO is set to dhcp.

If the system DHCP leases are too short from the DHCP server, at the
DHCP server, modify the /etc/dhcpd.conf file. Modify the max-lease-
time variable to obtain longer lease times.

Images

EXAM TIP The /etc/hostname file configures the Linux system’s
hostname and can be made persistent by using the hostnamectl command.
Here’s an example:

[root@localhost ~]# hostnamectl set-hostname server-one

The final network utility is the NetworkManager daemon, which has two
interface utilities: nmtui and nmcli. The nmtui command provides a curses-
based (that is, text user interface) with NetworkManager, as shown in
Figure 14-8. The nmcli command is used to create, display, edit, delete,
activate, and deactivate network connections with a command-line
interface. What’s great about both of these tools is that they will update the
network-related configuration files automatically! To view the existing
network connections, simply enter nmcli con or just nmcli, as shown here:

Images

Figure 14-8 nmtui main screen

Images

To determine the IP address of the ens32 connection, use the show option to
nmcli:

Images

To add an IP address alias on the ens32 connection, use the modify option
to nmcli and then activate the connection with the up option:

Images

Again, use modify to remove the alias:

Images

If the BOOTPROTO option is defined as DHCP and the DHCP server happens
to be down when a request for an IP address is made, it is not necessary to
reboot. Simply run dhclient at the shell prompt after the DHCP server is
available. To acquire an address for a specific interface, enter dhclient
<interface>. For example, dhclient ens32 specifies that the interface get
its IP address from the DHCP server. This is shown in Figure 14-9.

Images

Figure 14-9 Using dhclient to obtain an IP address lease

Exercise 14-1: Working with Network Interfaces

In this exercise, you practice using the ifconfig command to manage your
network interface. You can perform this exercise using the CentOS virtual
machine that comes with this book.

Images

VIDEO Please watch the Exercise 14-1 video for a demonstration on how
to perform this task.

Complete the following:

1. Boot your Linux system and log in as your student1 user.

2. Open a terminal session.

3. Switch to your root user account by entering su - followed by the
password.

4. At the shell prompt, enter ip addr show. Record the following
information about your Ethernet interface:

• MAC address

• IP address

• Broadcast address

• Subnet mask

5. At the shell prompt, use the cd command to change to the
/etc/sysconfig/network-scripts directory.

6. Use the ls command to identify the configuration file for your network
board.

7. Use the cat command to view the contents of the configuration file for
your Ethernet network interface board.

8. Bring your interface down by entering ip link set enp0s17 down at
the shell prompt.

9. Bring your interface back up by entering ip link set enp0s17 up at
the shell prompt.

10. Change the IP address assigned to your Ethernet network interface to
192.168.1.100 by entering ip addr add 192.168.1.100 dev enp0s17 at
the shell prompt.

11. Enter ip addr show again and verify that the change was applied.

12. Use the ip addr show command again to change your IP
configuration parameters back to their original values.

13. If you have a DHCP server on your network segment, modify your
network interface configuration to use DHCP and then dynamically assign
an IP address to your Ethernet board by entering dhclient enp0s17 at the
shell prompt.

Configuring Routing Parameters

Within the IP protocol, routers do just what their name implies: they route
data across multiple networks to deliver information to a destination.
Routers operate at the Network layer and are used to connect various
networks together.

Routers are usually implemented in conjunction with a gateway and need to
be defined when setting a static network. The router hardware itself may be
as simple as a computer system with two NICs installed, or it may be a
specialized hardware appliance dedicated to routing.

Routers determine the best way to get data to the right destination by
maintaining a routing table of available routes. Routers use an algorithm
that evaluates distance, congestion, and network status to determine the
best route to the destination. Even if not configured as a router, every Linux
system maintains a routing table in RAM to determine where to send data
on a network.

To configure the default router address on a Red Hat–class system, update
the /etc/sysconfig/network-scripts/ifcfg-<interface> file with the
GATEWAY parameter, as shown here:

Images

To configure the default router address on a Debian-class system, update
the /etc/default/interfaces file and add a line for the gateway, as
shown here:

Images

Images

NOTE Use IP addresses, not hostnames, in this file. If the DNS server
were to go down or become unreachable, routing would be disabled.

After adding the gateway settings, simply restart the network, as shown
here:

Images

For the CompTIA Linux+ exam, you need be familiar with how to manage
routes with the route command at the shell prompt. Use the route
command to display or modify the routing table on the Linux host. If you
enter route without options, it simply displays the current routing table, as
shown in this example:

Images

Note that the default gateway is 10.0.0.1 because it is listed under the
Gateway setting, and the G is shown under Flags (the U means that the
connection is up).

You can add routes to the host’s routing table by entering

Images

For example, suppose you need to add a route to the 192.168.2.0/24
network through the router with an IP address of 10.0.0.254. In this case,
you would enter the following:

Images

To remove existing routes, use

Images

Here’s an example:

Images

Finally, to set the default route, enter route add default gw
<router_address> at the shell prompt. For example, if you want to add
10.0.0.254 as your default gateway router, enter this:

Images

Images

NOTE Changes made with the route or ip route command are not
persistent and are lost on reboot.

The ip command can also be used to manage routing. For example, to view
the routing table, enter ip route show or simply ip route at the shell
prompt, as shown here:

Images

To add a static route to the routing table, enter the following at the shell
prompt:

Images

The following example shows adding route 10.0.0.254 to the
192.168.5.0/24 network:

Images

To remove a route from the routing table, enter ip route del
<network/prefix> at the shell prompt. For example, to remove the
192.168.5.0/24 route, enter the following:

Images

Troubleshooting Routing Network Configuration Issues

After adding the default gateway, if you still cannot access the Internet,
make certain the router is up by running the route command. If the default
router does not appear and other computers cannot connect to the Internet,
that means your router is down and needs to be either restarted or replaced.

Configuring Name Resolver Settings

When you open a browser window and enter http://www.google.com in the
URL field, the browser, IP stack, and operating system have no clue where
to go to get the requested information. To make this work, the local system
needs to first resolve the domain name into an IP address.

http://www.google.com/

In the old days, basic hostname-to-IP-address resolution was performed by
the /etc/hosts file, which contains IP-address-to-hostname mappings.

Images

NOTE The /etc/hosts file still exists on Linux systems. In fact, it is the
first name resolver used by default. Only if a record for the requested
domain name does not exist in the hosts file will the operating system then
try to resolve the hostname using DNS. It is important to manage the hosts
file very carefully because it can be exploited.

Malware attempts to rewrite the /etc/hosts file with name mappings that
point to fake banking websites, but instead are elaborate pharming websites
designed to steal the user’s personal information.

The hosts file contains one line per host record. The syntax is

Images

For example, consider the following /etc/hosts file entry:

Images

This record resolves either the fully qualified DNS name of
mylinux.mydom.com or the alias (CNAME) of mylinux to an IP address of
192.168.1.1. Usually this file contains only the IP address and hostname of
the local system, but other entries may be added as well.

Using the /etc/hosts file to resolve hostnames works just fine; however, it
really isn’t feasible as the sole means of name resolution. The file would
have to be huge in order to resolve all the domain names used by hosts on
the Internet. In addition, an administrator would have to manually add,
remove, and modify hostname mappings in the file whenever a domain
name changed on the Internet. What a nightmare!

A better option is to submit the domain name to a DNS server. When a
DNS server receives a name resolution request, it matches the domain
name submitted with an IP address and returns it to the requesting system.

The system can then contact the specified host using its IP address. Here’s
how it works:

1. The system needing to resolve a hostname sends a request to the DNS
server it has been configured to use on IP port 53. If the DNS server is
authoritative for the zone where the requested hostname resides, it responds
with the appropriate IP address. If not, the process continues to step 2.

Images

NOTE A DNS server is considered to be authoritative if it has a record for
the domain name being requested in its database of name mappings.

2. The DNS server sends a request to a root-level DNS server. There are
13 root-level DNS servers on the Internet. Every DNS server is
automatically configured with the IP addresses of these servers. These root-
level DNS servers are configured with records that resolve to authoritative
DNS servers for each top-level domain (.com, .gov, .edu, .au, .de, .uk,
.ca, and so on).

3. The DNS server responds to the client system with the IP address
mapped to the hostname, and the respective system is contacted using this
IP address.

Images

NOTE Once this process happens for a particular name mapping, most
DNS servers will cache the mapping for a period of time. That way, if a
resolution request for the same hostname is received again, the DNS server
can respond directly to the client without going through this whole process
again.

Therefore, to make this system work, the administrator must provide the
system with the IP address of the DNS server to use. This is configured in
the /etc/resolv.conf file. This file defines the search prefix and the name
servers to use. Here is some sample content from a CentOS system’s
/etc/resolv.conf file:

Images

As can be seen in this example, the file contains two types of entries:

• search Specifies the domain name that should be used to fill out
incomplete hostnames. For example, if the system is trying to resolve a
hostname of WS1, the name will be automatically converted to the fully
qualified domain name of WS1.mydom.com. The syntax is search <domain>.

• nameserver Specifies the IP address of the DNS server to use for name
resolution. You can configure up to three DNS servers. If the first server
fails or is otherwise unreachable, the next DNS server is used. The syntax
is nameserver <DNS_server_IP_address>.

Use the /etc/nsswitch.conf (name service switch) file to define the order
in which services will be used for name resolution. Here are two lines of
the file you need to be concerned with:

Images

These two entries specify that the /etc/hosts file (files) is consulted first
for name resolution. If there is no applicable entry, the query is then sent to
the DNS server (dns) specified in the /etc/resolv.conf file. To search
dns first and then files, change the order within /etc/nsswitch.conf as
shown here:

Images

Troubleshooting Name Resolution Failure

If you are having trouble accessing a website, first make sure your network
connection is running correctly using ping and traceroute. Once the
connection has been verified, double-check your entries within
/etc/resolv.conf and /etc/nsswitch.conf.

If the nameserver field is undefined within /etc/resolv.conf or there is
no dns entry within /etc/nsswitch.conf, that is likely the trouble. After

making the corrections, you can validate success again using ping and
traceroute.

Configuring IPv6

As mentioned earlier, the world’s supply of registered IP addresses is
exhausted. To address this issue, most organizations reduce the number of
registered IP addresses that they need by implementing a NAT router.
However, using a NAT router is a short-term solution. To fully address this
issue, a new version of the IP protocol was released that handles the
number of IP addresses the modern computing world needs.

To accomplish this, IP version 6 (IPv6) is rolling out around the world.
IPv6 is expected to completely replace IPv4 over the next decade. Instead
of 32 bits, IPv6 defines 128-bit IP addresses, which allows for
340,282,366,920,938,463,463,374,607,431,768,211,456 total unique IP
addresses. (Hopefully, this will be enough!)

IPv6 addresses are composed of eight four-character hexadecimal numbers
(called hextets), separated by colons instead of periods. Each hextet is
represented as a hexadecimal number between 0 and FFFF. For example, a
valid IPv6 address is 128 bits and appears like
35BC:FA77:4898:DAFC:200C:FBBC:A007:8973.

For an IPv6 address of 1:2:3:a:b:c:d:e, assume each hextet is led by zeros,
so this address is the same as 0001:0002:0003:000a:000b:000c:000d:000e.

Images

EXAM TIP Because IPv6 addresses are so long, they will frequently be
abbreviated. If the address contains a long string of multiple zeros, omit
them by specifying ::. If 0000 occurs more than once in an address, the
abbreviation can only be used once. For example, the IPv6 address
2001:0000:3a4c:1115:0000:0000:1a2f:1a2b can be shown as either
2001::3a4c:1115:0000:0000:1a2f:1a2b or 2001:0000:3a4c:1115::1a2f:1a2b.

There are several configuration options when it comes to IPv6 addressing.
The first is to use static assignment. As with IPv4, static IPv6 address

assignments require you to manually assign the entire 128-bit IPv6 address
and prefix to the host. This can be done from the shell prompt using a
command-line utility such as ifconfig or ip. Alternatively, you can
manually enter the address and prefix in the appropriate interface
configuration file in /etc/sysconfig/network or use nmcli.

The final IPv6 address configuration option is to use DHCP. As with IPv4,
IPv6 address assignments can be made automatically using an updated
version of DHCP called DHCPv6.

Troubleshooting Network Problems

Getting the network interface installed is only half the battle. To enable
communications, you need to use a variety of testing and monitoring tools
to make sure the network itself is working properly. You need to understand
the following topics to pass the CompTIA Linux+ exam:

• Using a standardized troubleshooting model

• Using ping

• Using netstat

• Using traceroute

• Using nc

• Using name resolution tools

• Synchronizing time on a network

Images

NOTE If necessary, install these utilities by running the following on
CentOS-class systems as root. This suite includes net-tools and
iproute2:

yum install nfs-utils nmap-ncat samba-client iproute

Using a Standardized Troubleshooting Model

Being a good troubleshooter is a key part of being an effective Linux
system administrator. Some new administrators seem to have an intrinsic
sense to troubleshoot problems; others turn five-minute solutions into five-
hour puzzles. The reason for this is that troubleshooting is part art form,
part science. Just as it is difficult for some to learn to draw, sculpt, or paint,
it is also difficult for some to learn to troubleshoot.

There are three keys to troubleshooting effectively:

• Using a solid troubleshooting procedure

• Obtaining a working knowledge of troubleshooting tools

• Gaining a lot of experience troubleshooting problems

The last point is beyond the scope of this book. The only way to gain
troubleshooting experience is to spend a couple years in the field. However,
we can work with the first two points. In the last part of this chapter, we
will focus specifically on troubleshooting network issues. However, the
procedure we discuss here can be broadly applied to any system problem.

Many new system administrators make a key mistake when they
troubleshoot system or network problems. Instead of using a methodical
troubleshooting approach, they start trying to implement fixes before they
really know what the problem is. The administrator tries one fix after
another, hoping that one of them will repair the problem.

Even though troubleshooting models are not covered on the
CompTIA Linux+ exam, here is a suggested troubleshooting model as a
starting point for a new system administrator:

• Step 1: Gather information. This is a critical step. Determine exactly
what has happened. What are the symptoms and error messages? How
extensive is the problem?

• Step 2: Identify what has changed. In this step, identify what has
changed in the system. Has new software or hardware been installed? Did a
user change something?

• Step 3: Create a hypothesis. Develop several hypotheses that could
explain the problem. Check FAQs and knowledgebases available on the
Internet. Consult with peers to validate your hypotheses. Narrow the results
down to one or two likely causes.

• Step 4: Determine the appropriate fix. Use peers, FAQs, and
experience to identify the steps needed to fix the problem. Identify side
effects of implementing the fix and account for them. Often, the fix may
have side effects that are worse than the original problem.

• Step 5: Implement the fix. Note that in this troubleshooting model,
much research is done before implementing a fix! This increases the
likelihood of success. After implementing the fix, be sure to verify that the
fix actually repaired the problem.

• Step 6: Ensure user satisfaction. Educate users as to how to keep the
problem from recurring. Communicate with the users’ supervisors and
ensure they know that the problem has been fixed.

• Step 7: Document the solution. Finally, document the solution. If it
occurs again a year later, the team can quickly identify the problem and
know how to fix it.

Using this methodology, you can learn to be a very effective troubleshooter,
gaining hands-on experience in the real world.

In addition to using a troubleshooting methodology, you also need to know
how to use a variety of network troubleshooting tools for the CompTIA
Linux+ exam.

Using ping

The ping utility is one of the handiest tools in the networking virtual
toolbox. The ping command is used to test connectivity between hosts on

the network. Ping works by sending an ICMP echo request packet from the
source system to the destination. The destination system then responds with
an ICMP echo response packet. This process is shown in Figure 14-10.

Images

Figure 14-10 Using ping

If the ICMP echo response packet is received by the sending system, you
know three things:

• Your network interface is working correctly.

• The destination system is up and working correctly.

• The network hardware between your system and the destination system
is working correctly.

Images

CAUTION Be warned that many host-based firewalls used by many
operating systems are configured by default to not respond to ICMP echo
request packets. This is done to prevent a variety of denial of service (DoS)
attacks that utilize a flood of ping requests. This configuration can give the
false impression that the destination system is down.

The basic syntax for using ping is ping <destination_IP_address>. This
causes ICMP echo request packets to be sent to the specified host. For
example, enter ping 192.168.2.1 to test a host with this address. This is
shown in Figure 14-11.

Images

Figure 14-11 Pinging a host by IP address

Notice in Figure 14-11 that the results of each ping sent are shown on a
single line. Each line displays the size of the echo response packet (64
bytes), where it came from (192.168.2.1), its time-to-live value (63), and
the round-trip time (4.25 ms to 1.01 ms).

Images

NOTE The time-to-live (TTL) value specifies the number of routers the
packet is allowed to cross before being thrown away.

By default, the ping utility will continue sending ping requests to the
specified host until Ctrl-c is pressed to stop it. Use the -c option with the
ping command to specify a number of times to ping. For example, enter
ping -c 10 192.168.2.1 to ping 10 times and then exit.

Pinging by hostname is shown in Figure 14-12.

Images

Figure 14-12 Pinging by hostname

Pinging with a hostname can be a valuable troubleshooting tool because it
signals if there is a problem with the DNS server. For example, pinging by
IP address works but pinging by hostname does not.

Using netstat

The netstat utility is another powerful tool in the virtual toolbox. This
utility can do the following:

• List network connections

• Display the routing table

• Display information about the network interface

The syntax for using netstat is to enter netstat <option> at the shell
prompt. Use the options listed in Table 14-6.

Images

Table 14-6 netstat Options

Images

EXAM TIP The ss (“show sockets”) command is the replacement
command for netstat and has more functionality to better examine
network status. Try running the command ss -neopa and observe the status
from all sockets.

Using traceroute

When information is sent to an IP host that does not reside on your local
network segment, the packets will be sent to the default gateway router.
This router will then use a variety of routing protocols to figure out how to
get the packets to the destination. In the process, the packets are transferred
from router to router to router to get them there, as shown in Figure 14-13.

Images

Figure 14-13 Routing in an IP network

This is the advantage of an IP-based network. A network administrator can
connect multiple networks together using routers and transfer data between
them. The routing protocols used by routers dynamically determine the best
route for packets to take based on system load. The route taken can change
as network conditions change.

The traceroute utility is used to trace the route a packet traverses through
these routers to arrive at its destination. It does this using the same ICMP
echo request and ICMP echo response packets used by the ping utility, but
it manipulates the TTL parameter of those packets. As a result, an ICMP
echo response packet is sent back to the source system from each router the
packets cross as they work their way through the network to the destination
host, providing a list that shows the route between the source and
destination systems.

This utility can be very useful in troubleshooting communication problems
between networks, because it can track down which router is not working
correctly. The syntax for using this utility is traceroute
<destination_hostname_or_IP_address>. The traceroute command

creates one line for each router the packets cross as they make their way to
the destination. This is shown in Figure 14-14.

Images

Figure 14-14 Using traceroute

As you can see in Figure 14-14, the IP address of the router is displayed
along with round-trip time statistics.

The mtr (“my traceroute”) command is a network diagnostics tool that
combines the functionality of traceroute and ping. To see mtr
www.yahoo.com results, see Figure 14-15. The output displays the quality of
the connections.

Images

Figure 14-15 Output of the mtr command

Using nc

The nc (“netcat”) command is a very useful tool for testing network
communications between hosts. It goes one step beyond the ping command
and establishes a connection between two network hosts. One way to use
this command is to open a listening socket on one host and then connect to
that socket from another host. In the following example, the listening
socket is enabled using the -l (“dash el”) option using port 2388:

Images

With a listening socket established on the server, the client can connect to it
using the nc command again, this time entering the IP address of the server
and the listening port:

Images

Once the connection is established, any text typed at the prompt of the
client system will appear on the netcat server, as shown here:

Images

Images

EXAM TIP Make sure the appropriate ports in the firewalls are open on
both systems; otherwise, the test will fail!

Using Name Resolution Tools

Using DNS for name resolution works great—until it doesn’t work!
Fortunately, there are several tools available to troubleshoot name
resolution on a network:

• dig

• host

• nslookup

• resolvectl

Images

NOTE To install these utilities, run the following on CentOS-class
systems as root: # yum install bind-utils

dig

The Domain Information Groper, or dig, utility performs DNS lookups on
the network and displays detailed information about the hostname being
resolved from the DNS server, as configured in the /etc/resolv.conf file.
The syntax is dig <hostname>, as shown in Figure 14-16.

Images

Figure 14-16 Using dig to resolve a hostname

The output from dig is considerably more extensive than that displayed by
other DNS troubleshooting tools such as nslookup and host in that it
displays more than just the IP address of the host. It also lists the
authoritative name server for the host and zone.

host

The host command resolves hostnames. Whereas the dig command
provides extensive name resolution information, host provides simple,
quick information. The syntax is similar to that of dig. Enter host
<hostname> at the shell prompt. An example of using host is shown here:

Images

nslookup

In addition to host and dig, nslookup can test name resolution, as shown
here:

Images

resolvectl

The resolvectl command is a useful tool to display your DNS server.
Here’s partial output of the resolvectl (or optionally, resolvectl
status) command:

Images

Use the query option to do a forward or reverse lookup of a domain, as
shown here:

Images

Images

EXAM TIP Use the whois command to get ownership information of a
website domain, if the owner has not blocked it. The command whois
<domain_name> will list their name, phone number, and address.

Synchronizing Time on a Network

An option for network time synchronization is to use the Network Time
Protocol (NTP) to sync time with a network time provider. If there is a time
differential with the network time provider, NTP adjusts time gradually in
small increments until time is eventually synchronized. The ntpd daemon
on Linux synchronizes time with the NTP time provider and operates over
IP port 123.

Here are several key NTP concepts that are not tested on the CompTIA
Linux+ exam but are good to know as you set up your timeserver
environment:

• Stratum NTP uses the concept of stratum to define a hierarchy of NTP
servers:

• Stratum 1 Time servers that get their time from a reference time source,
such as the Naval atomic clock; for example, tick.usno.navy.mil and
tock.usno.navy.mil

• Stratum 2 Time servers that get their time from stratum 1 servers

• Stratum 3 Time servers that get their time from stratum 2 servers

To define your time server, modify /etc/ntp.conf. The first thing you
need to do is ensure that the following entries exist for the local clock,
which is used if the time server is not available:

Images

These directives tell the ntpd daemon to get time from the local clock in
the event it can’t reach any of the configured NTP time providers.

Next, add entries to the file for the network time providers to sync time
with. Here is the syntax:

Images

You can specify the IP address or DNS name of any NTP time provider you
want to use. Visit https://support.ntp.org/Servers/WebHome to view a list of
publicly available NTP time providers.

If you wish, use an NTP pool time server from the http://pool.ntp.org
domain, which uses a DNS round robin to make a random selection from a
pool of time providers who have volunteered to be in the pool. That way,
no one public NTP server is overloaded with time synchronization requests.
To use this, simply add the following server directive in /etc/ntp.conf:

Images

To start ntpd, enter systemctl start ntp at the shell prompt. You can
verify that it started correctly by entering systemctl status ntp at the
shell prompt.

Once the ntpd daemon has started, you can use two commands to keep
track of how the ntpd daemon is working:

• ntpq –p This command queries the status of the ntpd daemon. Here is
an example:

Images

• ntptrace The ntptrace utility traces how the time consumer is
receiving time from the provider. It lists the time provider’s name, its
stratum, and its time offset from the system clock on the local system.

Keeping Computer Clocks Accurate with chrony

The chrony utility uses two programs to keep clocks accurate, chronyd and
chronyc. The chronyd utility is the background program for managing

https://support.ntp.org/Servers/WebHome
http://pool.ntp.org/

time, and chronyc is the user’s command-line interface to track and verify
time.

The chrony configuration file is /etc/chrony.conf, and an example is
shown here:

Images

Start chrony by running systemctl start chronyd. To verify activity, run
chronyc tracking. Partial output is shown here:

Images

The Reference ID represents the name and/or IP address of the time
server. The Stratum is the number of hops away from a stratum 1 time
server. Ref time is the UTC last measured from the time server.

One benefit of chrony over NTP is that it helps keep time for systems that
normally are powered down or disconnected from the Internet.

Exercise 14-2: Working with Network Commands

In this exercise, you will practice using network commands to manage and
troubleshoot your network interface. This exercise assumes that you have a
connection to the Internet. You can perform this exercise using the CentOS
virtual machine that comes with this book.

Images

VIDEO Please watch the Exercise 14-2 video for a demonstration on how
to perform this task.

Complete the following steps:

1. Boot your Linux system and log in as your student1 user.

2. Open a terminal session.

3. Switch to your root user account by entering su - followed by the
password.

4. Test connectivity by entering ping www.google.com at the shell
prompt. Your system should resolve the hostname into an IP address and
send ICMP echo request packets to it. (If your system isn’t connected to the
Internet, this step won’t work.)

Images

NOTE If you are unable to ping the remote website, verify that an IP
address has been assigned using the ifconfig command. If an address has
not been assigned, enter systemctl restart network to reload the
network configuration.

5. Display summary information about your network interface by entering
netstat -s | more at the shell prompt. Review the information displayed.

6. Trace the route to www.google.com by entering traceroute
www.google.com at the shell prompt. Note the various routers crossed as
your packets traverse the Internet to www.google.com.

7. Generate extended name resolution about www.google.com by entering
dig www.google.com at the shell prompt.

Understanding Network-Based Filesystems

There are two network-based filesystems you need to be familiar with for
the CompTIA Linux+ exam:

• Network File System (NFS)

• Samba

NFS allows users to mount network filesystems on vendor-neutral
networks. Samba allows Linux systems to mount network filesystems on
Windows-based networks. You should understand the basics of accessing
these filesystems.

http://www.google.com/
http://www.google.com/
http://www.google.com/

Network File System (NFS)

Most networks allow sharing of filesystems over NFS. In order for NFS to
function properly, all systems need to run NFS. For Windows systems, this
means installing PC-NFS. NFS Manager is built into macOS.

Once the NFS servers are properly set up, their “shares” are accessible to
NFS clients. To view the possible shares, run the showmount command:

Images

To access a shared NFS directory, use the mount command and the name of
the NFS server (system5), as shown:

Images

There may be situations where an administrator attempts to mount a
network filesystem but the remote system is down. NFS has a feature called
automounting to alleviate this issue, which will automatically mount the
remote filesystem once it becomes available.

Samba

For organizations that heavily rely on Windows systems, instead of
installing PC-NFS on several Windows computers, they could take
advantage of the SMB protocol available on Windows networks. Once the
Samba server is set up, the shared filesystems are viewable using the
smbclient command:

Images

To access shared filesystems from Windows, use the mount command
preceded by two forward slashes. This signifies that the mount is using
SMB. An example follows from a system called win2:

Images

Images

NOTE Both NFS and Samba allow for shared directories to be available
at boot time. Just add the shares to the /etc/fstab file.

Chapter Review

In this chapter, you learned how to set up networking on a Linux system.
You will most likely work with Ethernet network boards and the IP
protocol in most modern organizations.

The Internet Protocol (IP) works in conjunction with the Transmission
Control Protocol (TCP) or the User Datagram Protocol (UDP) to fragment,
transmit, defragment, and resequence network data to enable
communications between hosts. We also looked at the Internet Control
Message Protocol (ICMP), which is another core protocol in the IP protocol
suite. The primary role of ICMP is to test and verify network
communications between hosts.

Each host on the network must have a correctly configured, unique IP
address assigned to it and the correct subnet mask assigned. The subnet
mask defines how much of a given host’s IP address is the network address.
When viewed in binary form, any bit in the subnet mask that has a 1 in it
represents a network address, and any bit with a 0 in it represents the host
address. IP addresses are categorized into the following classes:

• Class A 255.0.0.0 = 11111111.00000000.00000000.00000000 binary

• Class B 255.255.0.0 = 11111111.11111111.00000000.00000000 binary

• Class C 255.255.255.0 = 11111111.11111111.11111111.00000000
binary

Hosts on the same network segment must have the same network address
for them to communicate. Therefore, the same subnet mask must be
assigned to each host.

To resolve domain names into IP addresses, the Linux system must also be
configured with the IP address of the organization’s DNS server. In

addition, the system must be configured with the address of the default
gateway to communicate with hosts on other network segments.

We also reviewed public and private IP addressing. Public networks are
allowed on the Internet. Private networks are only allowed in local area
networks (LANs). NAT routers hide a private network behind one or more
public interfaces. IPv6 addresses are composed of eight four-character
hexadecimal numbers, separated by colons instead of periods.

To assign the DNS server address or the default gateway address, edit the
/etc/resolv.conf configuration file. To bring a network interface down,
enter ifdown at the shell prompt. To bring it up, enter ifup. To use a DHCP
server to dynamically assign IP address information to a Linux host, enter
dhclient <interface> at the shell prompt.

This chapter discussed several command-line utilities you can use to test
and monitor the network, such as ping, traceroute, and mtr.

The nc command establishes a connection between two hosts. First open a
listening socket on one host and then connect to that socket from another
host.

The tools to use to synchronize time via a network time server are NTP and
chrony. Use chrony for systems that are often powered down.

Tools available for name resolution include dig, host, resolvectl, and
nslookup. The whois command details the owner, phone number, and
address of the domain owner.

Finally, the exam covers two utilities that allow remote mounts of
filesystems. NFS is best for vendor-neutral environments, whereas Samba
allows sharing from Windows systems.

Be sure you understand these key points about managing network settings:

• A protocol is a common networking language that must be configured
for network hosts to communicate.

• The Internet Protocol (IP) works in conjunction with TCP or UDP to
fragment, transmit, defragment, and resequence network data.

• The Internet Control Message Protocol (ICMP) is used to test and verify
network communications between hosts with traceroute and ping.

• Ports allow a single host with a single IP address to provide multiple
network services.

• Each host on an IPv4 network must have a unique IP address assigned as
well as the correct subnet mask.

• The subnet mask defines how much of a given host’s IP address is the
network address and how much is the IP address.

• Hosts on the same network segment must have the same subnet mask
and must be assigned to each host.

• A network host must be configured with the IP address of a DNS server
to resolve domain names into IP addresses.

• A network host must be configured with the IP address of the segment’s
default gateway router for it to communicate with hosts on other network
segments.

• IPv6 addresses are composed of eight four-character hexadecimal
numbers, separated by colons instead of periods.

• Within each class of IP address are blocks of addresses called private or
reserved IP addresses:

• 10.0.0.0–10.255.255.255 (Class A)

• 172.16.0.0–172.31.255.255 (Class B)

• 192.168.0.0–192.168.255.255 (Class C)

• A NAT router hides a private network behind one or more public
interfaces.

• You can enter ifconfig or ip addr show at the shell prompt to view the
details of your installed network interfaces.

• To assign an IP address to a network interface, use ifconfig or ip addr
add at the shell prompt.

• To make IP address assignments persistent, enter them in the appropriate
file under the /etc/ directory.

• Use the ip command to manage network interfaces.

• Enter the organization’s DNS server address in the /etc/resolv.conf
file.

• To dynamically assign an IP address to a Linux host, enter dhclient
<interface> at the shell prompt.

• Use ping to test connectivity between systems. The syntax is ping
<destination_host>.

• Use the netstat command to view a variety of network interface
information using the -a, -i, and -r options.

• Use the traceroute utility to trace the route your packets follow to
reach a remote system. The syntax is traceroute <destination_host>.

• The mtr command combines both ping and traceroute by displaying
routes and how long it takes to reach them.

• Use the route, ip route, or netstat -r command to view your
system’s routing table.

• To test TCP or UDP communications, use the nc command.

• To synchronize time with a time server, use either NTP or chrony.

• Use the route or ip route command to add or remove routes from the
route table.

• Use the dig, host, resolvectl, and nslookup commands to test DNS
name resolution.

• The whois command provides domain ownership and IP address
information.

Questions

1. Which of the following statements are true of the MAC address?
(Choose two.)

A. It is hard-coded in the network board.

B. It is logically assigned by the operating system.

C. It is globally unique.

D. The network administrator can configure its value.

E. It is used by the DNS server to resolve domain names.

2. Which transport protocol is used by network applications that need very
low latency and can tolerate a certain degree of unreliability?

A. User Datagram Protocol

B. Transmission Control Protocol

C. Internet Protocol

D. Internet Control Message Protocol

3. Which layer of the OSI model enables the routing of data?

A. Data Link

B. Network

C. Transport

D. Session

E. Application

4. You’ve just set up an e-mail server on your Linux system and enabled
the SMTP and POP3 daemons to allow users to send and receive mail.
Which ports must be opened in your system’s host firewall to allow this?
(Choose two.)

A. 20

B. 21

C. 25

D. 110

E. 119

F. 80

5. Which of the following are valid IP addresses that can be assigned to a
network host? (Choose two.)

A. 192.168.254.1

B. 11.0.0.0

C. 257.0.0.1

D. 192.345.2.1

E. 10.200.0.200

6. Your network interface has been assigned an IP address of 10.0.0.1.
What is the binary equivalent of this decimal address?

A. 10001010.00000000.00000000.00000001

B. 00001010.00000001.00000001.00000001

C. 10100000.00000000.00000000.00000001

D. 00001010.00000000.00000000.00000001

7. You need to use ifconfig to assign an IP address of 176.23.0.12 and a
subnet mask of 255.255.0.0 to your eth0 interface. Which of the following
commands will do this?

A. ifconfig eth0 176.23.0.12 netmask 255.255.0.0

B. ifconfig 176.23.0.12 netmask 255.255.0.0

C. ifconfig eth0 176.23.0.12 mask 255.255.0.0

D. ifconfig dev=eth0 ipaddr=176.23.0.12 subnetmask=255.255.0.0

8. You’ve opened your /etc/resolv.conf file in the vi editor. You want
to specify a DNS server address of 10.200.200.1. Which of the following
directives would you enter in this file to do this?

A. host 10.200.200.1

B. resolver 10.200.200.1

C. dnsserver 10.200.200.1

D. nameserver 10.200.200.1

9. You want to use your organization’s DHCP server to dynamically
assign an IP address to your ens1 network interface. Which of the
following commands would you enter at the shell prompt to do this?

A. dhcp ens1

B. dhclient ens1

C. get address dynamic ens1

D. ip address=dhcp dev= ens1

10. You need to verify that a remote host with a hostname of
fs1.mycorp.com is up and running. Which of the following commands
would you enter at the shell prompt to do this?

A. finger fs1.mycorp.com

B. ping fs1.mycorp.com

C. netstat -s fs1.mycorp.com

D. verify fs1.mycorp.com

11. Which commands can resolve domain names on a Linux system?
(Choose four.)

A. nslookup

B. dig

C. resolvectl

D. host

E. hosts

12. Which chronyc option verifies time server activity?

A. chronyc trackers

B. chronyc tracking

C. chronyc track

D. chronyc tracker

Answers

1. A, C. MAC addresses are hard-coded into the firmware of every
Ethernet network board. Theoretically, no two network boards in the world
should have the same MAC address. However, a few types of network
boards do allow you to manually configure the MAC address.

2. A. The User Datagram Protocol is an unacknowledged, connectionless
protocol that sends packets without requesting a confirmation of receipt.
This makes it ideal for network applications that need very low latency but
can tolerate a certain degree of unreliability, such as streaming video.

3. B. The Network layer of the OSI model enables the routing of data
between networks. In an IP network, this functionality is provided by the
Internet Protocol (IP itself).

4. C, D. The SMTP daemon uses port 25 by default, whereas the POP3
daemon uses port 110 by default.

5. A, E. 192.168.254.1 and 10.200.0.200 are both valid IP addresses that
can be assigned to network hosts.

6. D. The binary equivalent of the first octet (10) is 00001010. The binary
equivalent of the second and third octets (0) is 00000000 each. The binary
equivalent of the fourth octet (1) is 00000001.

7. A. The ifconfig eth0 176.23.0.12 netmask 255.255.0.0 command
will assign the IP address and subnet mask to the eth0 interface.

8. D. The nameserver 10.200.200.1 directive specifies a DNS server
with an IP address of 10.200.200.1.

9. B. The dhclient ens1 command will configure the ens1 interface with
IP address information from a DHCP server.

10. B. The ping fs1.mycorp.com command is the best to use to test the
network.

11. A, B, C, D. There is no hosts command. /etc/hosts is a file for local
domain name resolution.

12. B. The other options do not exist.

CHAPTER 15

Understanding Network Security

In this chapter, you will learn about

• Understanding how encryption works

• Implementing secured tunnel networks

• Configuring high-availability networking

• Understanding single sign-on

• Defending against network attacks

• Encrypting files with GPG

We came up with the standard to allow different CAD systems to
communicate.

—Walt Braithwaite, Boeing

Unethical hackers have figured out that a minimal amount of information
can yield huge profits, and they will stop at nothing to get it. As a result,
ethical hackers must be obsessive about information security.

Network security is focused on protecting valuable electronic information of
organizations and users. Therefore, the demand for IT professionals who
know how to secure networks and computers is at an all-time high. Linux
system administrators need to be very aware of the security issues affecting
networks. In this chapter, we will cover how to use encryption to increase
the security of Linux networks.

Images

TIP Information security is a huge topic that cannot adequately be
addressed in this book. I highly recommend that you enhance your career by
getting the Security+ certification from CompTIA, or the CISSP
certification from (ISC)2. The IT world has become the modern equivalent
of the Wild West from American history. CompTIA Linux+ certified
engineers must know how to thoroughly protect data from malicious users!

Understanding How Encryption Works

Harken back to elementary school days when you may have passed notes to
friends. To keep those notes secret, you may have used a code such as this:

Images

Images

NOTE This symmetric encryption technique is called a letter shift.

For example, the plain text “JAKE LIKES DICEY” would encrypt to the
cipher “IZJD KHJFR CHBDX.”

This basic concept of using keys to scramble and descramble messages can
be used to encode network communications as well. In today’s security-
conscious world, the need to encrypt the contents of network
communications is critical, as hackers listen to traffic for passwords, Social
Security numbers, national insurance numbers, personal account numbers,
and so on. Using network monitoring tools such as Wireshark, or the Linux
command-line tools tcpdump and tshark, makes it relatively easy for
hackers to sniff out network transmissions and read them.

To protect this information, network communications must be encrypted.
Unlike simple codes used in the fourth grade, network cryptography today
uses much more sophisticated encoding mechanisms. There are three
general approaches:

• Symmetric encryption

• Asymmetric encryption

• Integrity checking via hashing

Symmetric Encryption

The fourth-grade encryption system just mentioned is an example of
symmetric encryption, which uses a single private key. The key used to
encrypt a message is the same key used to decrypt the message. This means
the sender and the receiver must both have the exact same key, as shown in
Figure 15-1. Symmetric algorithms include Blowfish, 3DES, and AES.

Images

Figure 15-1 Symmetric encryption

Images

NOTE Symmetric encryption is sometimes called secret key encryption.
Because of the high risk of the secret key being stolen, another encryption
mechanism is commonly used today, called asymmetric encryption.

Asymmetric Encryption

Unlike symmetric encryption, asymmetric encryption uses two keys instead
of one: a public key known by everyone, and a private key only known by
the owner. Data encrypted with the public key is decrypted with the private
key. Data signed with the private key is verified with the public key.
Examples of asymmetric encryption include RSA, DSA, and Diffie-
Hellman.

Images

NOTE Digital signatures are not GIF or JPEG images of a written
signature. They are codes that only each owner has. Because the data comes
with the individual code (that is, the sender’s private key), you can verify
that the message came from that individual using the sender’s public key.

Because of its high difficulty to break, public key cryptography is a widely
used method for encrypting data. Online shopping only exists because of

asymmetric encryption, keeping secret the customer’s address, phone, and
credit card number.

To verify that an online store is legitimate, such as microbank.com, a
certificate authority (CA) is used, such as Verisign, Entrust, or DigiCert. The
CA assures customers that they are banking at microbank.com, for example,
and not a spoof site like fake-microbank.com, by providing the store with a
signed certificate that only they own. The fake site appears to be
microbank.com but is programmed to steal customers’ private information.
This asymmetric process is called public key infrastructure (PKI).

To encrypt personally identifiable information (PII) such as account
numbers, residential addresses, and tax identification numbers, website
administrators deploy SSL/TLS. You’ll know you’re visiting a secure site
because a small lock will display in the address bar of your browser. This is
because you accessed the site using its https address, not the http setting.

To test your web server’s SSL/TLS connection, use the openssl command.
Running openssl s_client -connect mywebsite.com:443 will help you
ensure your connection has the correct encryption and hashing algorithms to
satisfy your customers.

Administrators can mint their own certificates and use them to encrypt both
network transmissions and files in the filesystem. These are called self-
signed certificates.

Images

NOTE Website administrators can acquire a wildcard certificate to save
money. Instead of buying www.aaa.com and mail.aaa.com, they purchase
only aaa.com, which can be used for www.aaa.com, mail.aaa.com,
ssh.aaa.com, and so on.

Integrity Checking via Hashing

When downloading software, pictures, or music, how does the user know
that the file has not been accidentally altered or intentionally modified? To
validate that the file has not been altered, the user can use a technique called

http://microbank.com/
http://microbank.com/
http://www.aaa.com/
http://aaa.com/
http://www.aaa.com/

one-way encryption, or hashing. For example, when visiting OpenSUSE to
download the operating system, you will also see a list of hash values, as
shown here:

Images

Images

NOTE You can reach OpenSUSE’s link of mirror download sites by
visiting https://opensuse.org. From there, click the link that states “Get the
most complete Linux distribution” or “latest regular-release version” and
then select “Pick Mirror.”

In this case, three hash values are listed: SHA-256, SHA-1, and MD5.

File integrity checking is completed by ensuring the downloaded file hash
matches the vendor’s published hash value. There are several hashing tools,
but the two most popular are MD5 and SHA. There are multiple versions of
SHA, with SHA-256 being one of the best because it is less likely for two
different files to calculate the same result, which is called a collision.

Hashes are like serial numbers for files. A specific file should only give one
result. So, the MD5 hash for OpenSUSE v15.0 is
5d4d4c83e678b6715652a9cf5ff3c8a3. If an administrator decides to
download OpenSUSE v15.0 from a mirror, they have to ask themselves, is
this a mirror we can trust? The administrator can verify the file by checking
the hash with the md5sum command. This outputs a message digest, like so:

Images

In this case, since the hash value matches the hash value on the OpenSUSE
website, the administrator knows they have a clean download. If the value
returned were any value other than 5d4d4c83e678b6715652a9cf5ff3c8a3,
then the administrator knows something is wrong with the downloaded file.
In most cases, the user downloaded only a portion of the file and has to
attempt the download again. In rare cases, a mismatch could signal the file
has been altered with malware. A hash mismatch would look something like
this:

https://opensuse.org/

Images

The OpenSUSE website also lists SHA-1 and SHA-256 hash values. These
can be verified using the sha1sum and sha256sum commands, respectively.
Sometimes vendors will list the highest quality hashing value to date, SHA-
512. In this case, use the sha512sum command to verify file integrity.

Implementing Secured Tunnel Networks

In the early days of UNIX/Linux, network connection tools between systems
included telnet, rlogin, and rsh. Users would use rcp or FTP to copy files
between systems. However, because of hackers, these utilities must never be
used over public networks because they lack encryption.

These days, you can use the SSH package to accomplish these same tasks
securely with encryption. In this section, the following topics are addressed:

• How SSH works

• Configuring SSH

• Logging in to SSH without a password

• Virtual private networks

How SSH Works

SSH provides the functionality of telnet, rlogin, rsh, rcp, and FTP, but
with encryption. To do this, SSH provides the following encryption-enabled
components:

• sshd This is the SSH daemon that runs on the server.

• ssh This is the SSH client used to connect to the SSH server from a
remote system.

• scp This utility securely copies files between systems.

• sftp This utility securely copies files between systems, acting like FTP.

• slogin Like SSH, this utility is used to access the shell prompt remotely.

• ssh-keygen This utility is used to create users’ public/private keys. It can
also create self-signed certificates.

To establish a secure connection, SSH uses both asymmetric and symmetric
encryption. First, the SSH client creates a connection with the system, where
the SSH server is running on IP port 22. The SSH server then sends its
public keys to the SSH client. The SSH server stores its keys in the
following files:

• Private key /etc/ssh/ssh_host_key

• Public key /etc/ssh/ssh_host_key.pub

The client system receives the public key from the SSH server and checks to
see if it already has a copy of that key. The SSH client stores keys from
remote systems in the following files:

• /etc/ssh/ssh_known_hosts

• ~/.ssh/known_hosts

By default, if the client does not have the server’s public key in either of
these files, it will ask the user to add it. Having done this, the client now
trusts the server system and generates the symmetric key. It then uses the
server’s public key to encrypt the new secret key and sends it to the server.
The server decrypts the symmetric key using its private key, and now both
systems have the same secret key and can use faster symmetric encryption
during the duration of the SSH session. The user is presented with a login
prompt and can now authenticate securely because everything the user types
is sent in encrypted format.

After this secure channel has been negotiated and the user has been
authenticated through the SSH server, data can be securely transferred
between both systems.

Images

EXAM TIP By default, SSH is set up to use privileged port 22. This is
defined in the /etc/services file. Hackers also know the default port is 22.
Often, network administrators will use a port that is not 22 to make it harder
for hackers to invade the network.

Configuring SSH

To use SSH, install the openssh package. This package includes both the
sshd daemon and the ssh client. (SSH is usually installed by default on most
Linux distributions.)

The process of configuring SSH involves configuring both the SSH server
and the SSH client. Configure the sshd server using the
/etc/ssh/sshd_config file. The ssh client, on the other hand, is configured
using the /etc/ssh/ssh_config file or the ~/.ssh/config file.

Let’s look at configuring the SSH server first. There are many directives
within the /etc/ssh/sshd_config file. The good news is that after you
install the openssh package, the default parameters work very well in most
circumstances. After making changes to this file, restart sshd as root by
using systemctl restart sshd. Some of the more useful parameters in this
file include those shown in Table 15-1.

Images

Table 15-1 Options in the /etc/ssh/sshd_config File

Images

EXAM TIP Set PermitRootLogin to no to disallow logging in as root.

The SSH client on a Linux system is configured using the
/etc/ssh/ssh_config file. The /etc/ssh/ssh_config file is used to
specify default parameters for all users running SSH on the system. A user
can override these defaults using the ~/.ssh/config file in their home
directory. The precedence for configuring SSH client settings is as follows:

1. Any command-line options included with the ssh command at the shell
prompt

2. Settings in the ~/.ssh/config file

3. Settings in the /etc/ssh/ssh_config file

As with the sshd daemon, the default parameters used in the
/etc/ssh/ssh_config file usually work without a lot of customization.
Some of the more common parameters used to customize the SSH client are
listed in Table 15-2.

Images

Table 15-2 Options in the /etc/ssh/ssh_config File

Images

EXAM TIP Before connecting to an SSH server, make sure port 22 is
open on the host-based and network-based firewalls.

Figure 15-2 shows the YaST Firewall module on a SUSE Linux Enterprise
Server, configured to allow SSH traffic.

Images

Figure 15-2 Configuring the firewall to allow SSH traffic

After configuring the firewall, you can log in to the remote Linux system by
entering

Images

Images

TIP Don’t forget the -l parameter for logon name; otherwise, the SSH
client will attempt to authenticate the user as $USER to the remote system. If
the credentials are the same on both the client and server systems,

authentication will be successful. But if they are not, authentication will
be unsuccessful.

For example, to connect to a remote Linux system with a hostname of
fedora (which has an IP address of 10.0.0.85) as the user student using the
SSH client on a local computer system, enter ssh -l student fedora at the
shell prompt, as shown in Figure 15-3.

Images

Figure 15-3 Connecting remotely via SSH

Notice in Figure 15-3 that the user is prompted to accept the public key from
the fedora host because this was the first connection to this SSH server.
Once done, the user is authenticated to the remote system as the student
user (notice the change in the shell prompt). Now the user has access to the
fedora server and works as if they are sitting right at the console of fedora.
To close the connection, just enter exit at the shell prompt.

Images

TIP To enable X11 forwarding for your SSH session, connect to the
SSH server using the -X option, like so: ssh -X
user@sshserver.example.com

Exercise 15-1: Working with SSH

In this exercise, you set up an SSH server on a Linux system and then
connect to it using an SSH client from another Linux system.

Set up at least two Linux systems for this and the remaining exercises in this
chapter. Either use two live Linux systems, two Linux virtual machines, or a
mixture of both.

Images

VIDEO Watch the Exercise 15-1 video for a demonstration on how to
perform this task.

Complete the following steps:

1. Configure the SSH server system by doing the following:

a. Boot the Linux system that you want to function as an SSH server and
log in as a standard user (for example, student1).

b. Open a terminal session.

c. Switch to your root user account by entering su - followed by your
root user’s password.

d. At the shell prompt, use the package management utility of your choice
to ensure the openssh package has been installed.

e. At the shell prompt, enter vi /etc/ssh/sshd_config.

f. Locate the PermitRootLogin setting. If it has been commented out,
remove the # character from the beginning of the line.

g. Press Ins; then set PermitRootLogin to a value of no.

h. Press Esc; then enter :x to save your changes and exit the editor.

i. At the shell prompt, enter service sshd restart to restart the SSH
service and apply the change.

j. If necessary, open port 22 in the host firewall of the system where the
SSH server is running. The steps for doing this will depend on your
particular distribution.

2. Create an SSH connection from a client system by doing the following:

a. Start your second system, which will function as an SSH client, and log
in as a standard user.

b. Open a terminal session.

c. Open an SSH session with the first Linux system by entering ssh -l
<user_name> <IP_address_of_SSH_server> at the shell prompt. For

example, to connect to a system with an IP address of 192.168.1.125 as the
student1 user on that system, enter ssh -l student1 192.168.1.125 at
the shell prompt.

d. If prompted, enter yes to accept the public key from the SSH server.

e. Enter the password for the user you specified on the SSH server system.

f. Enter exit at the shell prompt to log off from the remote system.

3. Practice working with SSH utilities from your client system by doing the
following:

a. Run the ifconfig command on the remote system using SSH by
entering ssh -l <user_name> <IP_address_of_SSH_server>
/sbin/ifconfig at the shell prompt.

b. Enter the password of the remote user when prompted. You should see
the networking configuration assigned to the various interfaces on the
remote system. Notice that the connection automatically closed once the
command finished running.

c. Copy a file using a secure SSH connection by doing the following:

i. Create a new file in your user’s home directory by entering echo "This
is my new file." > ~/mytestfile.txt at the shell prompt.

ii. Copy this new file to the home directory for your remote user account on
your SSH server system by entering scp ~/mytestfile.txt <user_name>@
<IP_address_of_SSH_server>: at the shell prompt.

iii. Enter the remote user’s password when prompted. You should see that
the file was copied.

iv. Use the ssh command to establish an SSH connection again with your
SSH server system using the same username you entered previously to copy
the file.

v. Verify that the file exists in the remote user’s home directory.

vi. Enter exit to close the connection.

d. Use the sftp command to copy the mytestfile.txt file down from the
SSH server system to the local /tmp directory by doing the following:

i. At the shell prompt of your workstation system, enter sftp
<user_name>@ <IP_address_of_SSH_server>.

ii. Enter the remote user’s password when prompted.

iiii. At the sftp> prompt, enter get mytestfile.txt /tmp/.

iv. At the sftp> prompt, enter exit.

v. At the shell prompt, enter ls /tmp. You should see the mytestfile.txt
file that was copied from the SSH server system.

Now that you know how to use the SSH server and SSH client, you’re ready
to advance your knowledge by learning how to tunnel unencrypted traffic
through an SSH connection.

Images

NOTE The rsync (“remote sync”) utility is a great backup tool because it
can upload file updates, not duplicates. Also, ssh is used to encrypt the
transfers, like this: # rsync -av /filesdir/* user@remote:/filesdir

Logging In to SSH Without a Password

Administrators can also configure the SSH server to allow authentication
without a password. For example, the system administrator Eric is setting up
the system for encrypted remote backups using scp and wants to run these
weekly. He decides running backups as a cron job is the best way to do this,
but realizes that this will not work because scp always asks for a password.
So, now he must inform the server that a trusted client needs access, so it
should no longer ask for a password from this user at this client.

For this to work, the public key of the user on the client system must be
stored at the server. The file on the server is called

~/.ssh/authorized_keys. To do this, Eric needs to securely copy the public
key from the client system to the server system and add it to
~/.ssh/authorized_keys. (The private key, of course, remains on the client
system.) Now Eric can use scp and SSH to log in to the server without a
password; this is also known as public key authentication.

To configure public key authentication, first create the public/private key
pair on the client system. This can be done using the ssh-keygen command
by following these steps:

1. At the shell prompt of the client system, enter ssh-keygen -t rsa or
ssh-keygen -t dsa, depending on which encryption method your SSH
server supports. To be safe, simply use both commands to make two key
pairs—one for RSA encryption and the other for DSA encryption.

2. When prompted for the file in which the private key will be saved, press
Enter to use the default filename of ~/.ssh/id_rsa or ~/.ssh/id_dsa. The
associated public key will be saved as ~/.ssh/id_rsa.pub or
~/.ssh/id_dsa.pub, respectively.

3. When prompted, enter a passphrase for the key. Assigning a passphrase
to the key renders the key useless if someone does not know it.

At this point, the key pair is created. An example of creating an RSA key
pair is shown here:

Images

Next, copy the public key just created to the SSH server. An easy (and
secure) way to do this is to use the scp command. The syntax is

Images

In the example shown here, the RSA public key for the local ejeff user on
WS1 is copied to the home directory of the ejeff user on WS3 and saved in a
file named keyfile:

Images

At this point, the contents of the key file just copied need to be appended to
the end of the ~/.ssh/authorized_keys file in the home directory of the
user connecting to the SSH server. An easy way to do this is to connect to
the SSH server system using a standard SSH session and then use the cat
command to append the contents of the key file to the end of the
~/.ssh/authorized_keys file. Here’s an example:

Images

Now test the configuration to see if public key authentication works by
establishing a new SSH session with the server. In this case, Eric will be
prompted for the key file’s passphrase instead of a username and password.
Once the passphrase is entered, Eric will be authenticated to the SSH server.
Notice in the next example that no password was requested to establish the
SSH session:

Images

The final step is to use the ssh-agent command to eliminate the need to
enter the passphrase every time an SSH connection is established, as
detailed next. The ssh-agent command caches the keys once added to the
agent with ssh-add.

1. At the shell prompt of the client system, enter ssh-agent bash.

2. At the shell prompt, enter ssh-add ~/.ssh/id_rsa or ssh-add
~/.ssh/id_dsa, depending on which key file was created.

3. When prompted, enter the key file’s passphrase. You will be prompted
that the identity has been added. An example follows:

Images

Once this is done, the ssh-agent process stores the passphrase in memory
and listens for SSH requests. It then automatically provides the key
passphrase when requested.

Exercise 15-2: Configuring Public Key Authentication

In this exercise, you generate an RSA key pair on the client system and copy
the public key to the SSH server to enable public key authentication.

You’ll need at least two Linux systems for this exercise. Use either two live
Linux systems, two Linux virtual machines, or a mixture of both.

Images

VIDEO Watch the Exercise 15-2 video for a demonstration on how to
perform this task.

Complete the following steps:

1. Generate an RSA key pair on your client system by doing the following:

a. Log in to your client system as a standard user.

b. Open a terminal session.

c. Enter ssh-keygen -t rsa at the shell prompt.

d. When prompted for the file in which the private key will be saved, press
Enter to use the default filename of ~/.ssh/id_rsa.

e. When prompted, enter a passphrase for the key.

2. Configure the server system to use public key authentication by doing
the following:

a. Copy the public key you just created to your SSH server system by
entering the following:

Images

b. Enter the remote user’s password when prompted.

c. Establish an SSH session with the remote system as the user you intend
to authenticate as using public key authentication. Use the following
command:

ssh -l <user_name> <address_of_SSH_server>

d. Enter the remote user’s password when prompted.

e. At the shell prompt of the remote system, check to see if the .ssh/
hidden directory already exists by entering ls -la at the shell prompt. If the
.ssh/ directory doesn’t exist, create it using the mkdir ~/.ssh command.
Otherwise, go on to the next step.

f. Enter cat mykeyfile >> ~/.ssh/authorized_keys at the shell prompt
of the remote system.

g. Enter exit at the shell prompt to close the SSH session.

3. Test the new configuration by doing the following:

a. Enter ssh -l <user_name> <address_of_SSH_server> at the shell
prompt of your client system.

b. When prompted, enter the passphrase you assigned to your RSA private
key. At this point, you should be automatically authenticated to the SSH
server.

c. Close the session by entering exit at the shell prompt.

4. Configure ssh-agent to remember your private key passphrase by doing
the following:

a. Enter ssh-agent bash at the shell prompt of your client system.

b. At the shell prompt, enter ssh-add ~/.ssh/id_rsa.

c. When prompted, enter the key file’s passphrase. When you do, you
should be prompted that the identity has been added.

d. Enter ssh -l <user_name> <address_of_SSH_server> at the shell
prompt of your client system. You should be automatically authenticated to
the SSH server without being prompted for the private key passphrase.

Automatically Updating authorized_keys

The manual method to update ~/.ssh/authorized_keys can be automated
with ssh-copy-id if you already know the username and password of the
remote system. Here’s an example:

Images

The ssh-copy-id command will automatically update the authorized_keys
file on the SSH server.

Virtual Private Networks

A virtual private network (VPN) allows users to connect to remote servers
over untrusted networks but make it appear that they are part of the internal
network. To ensure the confidentiality of the network, encryption and
tunneling protocols are used to create this private network. This security is
provided through IP Security (IPSec). To reduce traffic congestion without
sacrificing security, Datagram Transport Layer Security (DTLS) is
implemented.

VPNs are used by employees to work from home and connect to the
corporate office, for example. Figure 15-4 shows an example of a home
office connecting to the corporate network via VPN.

Images

Figure 15-4 VPN connection from a home office to corporate headquarters

VPN connections can be made either in transport mode or tunnel mode.
Tunnel mode encrypts the headers and the message. Use tunnel mode when
data is transported over public networks. Transport mode is used over
trusted networks (for example, moving data from office to office). Transport
mode only encrypts the message, not the headers.

To set up the VPN client from Linux, click in the upper-right corner of the
screen on the network icon, as shown in Figure 15-5.

Images

Figure 15-5 Step 1 of creating a VPN connection

Next, click Wired Settings (see Figure 15-6). Then click the + sign to the
right of VPN to initiate the VPN connection, as shown in Figure 15-7.

Images

Figure 15-6 Step 2 of creating a VPN connection

Images

Figure 15-7 Step 3 of creating a VPN connection

After obtaining the credentials, save them to a file and import them into the
VPN client for an easy connection to the VPN server.

Images

NOTE A common command-line VPN client used on Linux systems
is OpenVPN.

There are several implementations of VPNs. One type uses SSH, and
another is the SSL VPN, which uses TLS as the encryption protocol (even
though TLS replaced SSL, the name SSL VPN stuck so it hasn’t changed).
Some administrators find these easier to set up over IPSec-based VPNs
because they can be deployed over a web browser.

Images

EXAM TIP If the VPN settings are all correct and the system will not
connect, make sure the proper ports are opened on the firewalls.

Securing Unencrypted Services with SSH Port Forwarding

SSH port forwarding allows you to tunnel unencrypted services over an
encrypted SSH channel. For example, if you are servicing a web server in
the DMZ via a jump server (a hardened server with intrusion detection that

better services protocols running in the DMZ), access it by using the -L
option of ssh to configure port forwarding as follows:

Images

This allows you to securely connect to the jump server and forward
connections to the web server securely.

Securing Unencrypted Services with SSH Dynamic Port Forwarding

SSH dynamic port forwarding allows you to open a proxy on your local
machine by using the -D option. Run the following:

Images

Now you can configure a web browser to use port 55555, and all traffic
originating from that location is directed via the SSH connections for port
55555.

Configuring High-Availability Networking

The consequence of not being able to access data is destruction. That is, if
data is not available, it is as if it has been destroyed, so availability is an
important component of security. Network availability can be enhanced by
converting the local network adapter into a concept called network bridging
or bonding. Bridging dual-homes two or more networks together for fault
tolerance. Bonding dual-homes network segments to boost network
throughput. Dual-homed networking is shown in Figure 15-8.

Images

Figure 15-8 Setup for network bridging and bonding

At this point, we will cover the two major types of redundant networks:

• Network bridge control

• Network bonding

For the CompTIA Linux+ exam, you need to understand the basics of
bridging and bonding network interfaces.

Images

NOTE Overlay networks allow administrators to give multiple IP
addresses to a local network card. Fox example, running the following
makes a single network card act like three network cards:

Images

Network Bridge Control

You set up bridging with the brctl command. Here is an example using the
addbr function to create the bridge and addif to add interfaces to the bridge:

Images

Spanning Tree Protocol (STP) is not enabled by default, but when it is
enabled, it provides methods to seek the shortest path between multiple
network switches and prevents network loops when multiple bridges are on
the network. To enable STP, run the following:

Images

Network Bonding

Network bonding aggregates multiple network interface cards into a single
bond interface that provides redundancy, increased throughput, and high
availability. To construct the bond on CentOS, define the script file
/etc/sysconfig/network-scripts/ifcfg-bond0:

Images

The BONDING_OPTS setting describes the bonding mode, as listed in Table 15-
3. The miimon parameter is the link check interval in milliseconds.

Images

Table 15-3 Network Bonding Policies

Next, modify the network interface configuration files and add the bond
definitions. Here is an example for interface enp0s9:

Images

The administrator would make similar settings for the other network
interfaces that are part of the bond and then restart the network by running
systemctl restart network.

Images

NOTE The ifcfg command can be used to add, delete, or stop a network
card instead of using ifconfig. For example, run ifcfg enp0s3 stop to
disable the network card.

Understanding Single Sign-On

Single sign-on (SSO) is an identity management feature that allows a user to
have one login and password to every system on the network. So, no matter
if an engineer is working in the Austin, Texas, office or the Mumbai,
Maharashtra, office, they can use the same login and password to access
their data.

SSO systems have several features, including one-time passwords (OTPs).
These systems provide the user a software token (e.g., FreeOTP) or a
hardware token, as shown in Figure 15-9, that produces a random value
every 30 seconds. When the user logs on to the system, to further
authenticate themselves they must provide the updated random value. This
provides an additional layer of security. If a hacker obtains the user’s
password but cannot guess the random value, they will still be locked out.

Images

Figure 15-9 One-time password (OTP) hardware token

Several utilities provide SSO services, including the following:

• RADIUS

• LDAP

• Kerberos

• TACACS+

For the CompTIA Linux+ exam, you simply need to understand the basics
of each single sign-on service.

Images

EXAM TIP Every user must have a unique user ID that is not shared with
anyone else. Shared accounts make it difficult to determine who caused
a negative occurrence.

RADIUS

Remote Authentication Dial-In User Service (RADIUS) is an authentication
protocol that allows local and remote users to connect via modems. Users
log in and get authenticated by the RADIUS server. After the user is
authenticated, they are granted an IP address and access to the network.
Since RADIUS is an open standard, it is vendor neutral.

RADIUS uses ports 1812 and 1813. Figure 15-10 diagrams how users
remotely access the RADIUS client to log on to the network.

Images

Figure 15-10 RADIUS client and server setup

LDAP

Lightweight Directory Access Protocol (LDAP) is an open source Active
Directory service. LDAP is vendor neutral, so it can operate well in Linux,
Windows, and macOS environments. The directory service follows the

X.500 standard, which defines usernames, passwords, computers, networks,
wireless devices, printers, and more.

LDAPv3 provides the most security, implementing TLS. LDAP uses ports
389, or port 636 if combined with SSL.

Kerberos

Kerberos is the name of the three-headed dog that guards Hades according
to Greek mythology. The Kerberos utility for system administrators guards
the network by providing strong authentication to protect the corporate
network.

Kerberos is the preferred system over public networks because users can
access services such as e-mail and SSH without transmitting their password
across the network. This way, hackers cannot even read the hashed version
of the user’s password. Kerberos uses a system called “tickets” to allow
users access to services.

Kerberos tickets work similarly to tickets used to see a movie. For example,
when you go to the movie complex, they may be showing 20 different titles.
Let’s say you want to see Candace, Eric, Albert, and Edward: The Movie at
2 P.M. You can only use the ticket for that movie at that time. When the
movie ends, the ticket expires.

In a similar way, a user gets a ticket from Kerberos to access e-mail that
starts now and expires in 60 minutes. Because encrypted tickets get passed
instead of passwords, it makes it extremely difficult for a hacker to discover
the credentials. Once the ticket expires, a new encrypted key with a new
expiration can be requested.

Make sure the clocks match between the client and the server. If they are
more than five minutes apart, Kerberos will fail. Kerberos will also fail if
firewall port 88 is closed.

To initiate a Kerberos session, run kinit <username>@<hostname>.com and
enter the user’s password. To view the addresses associated with the current

Kerberos tickets, run klist -a. To get details on current tickets, such as
length, expiration times, renewal times, and so on, run klist -v.

TACACS+

Terminal Access Controller Access Control System Plus, or TACACS+
(pronounced “tack-us-plus” or “tack plus”), combines authentication,
authorization, and accounting. TACACS+ is also more secure than other
protocols, such as RADIUS, because not only is the password encrypted, but
the entire transaction is encrypted. Also, TACACS+ can place
authentication, authorization, and accounting on three different servers,
unlike RADIUS, which combines authentication and authorization.
TACACS+ is not compatible with its predecessor, TACACS.

TACACS+ uses TCP port 49 to operate. Because it uses TCP instead of
UDP as RADIUS does, the connections are much more reliable. TACACS+
was originally designed for Cisco networks, but other vendors now support
TACACS+.

Images

NOTE Microsoft Windows systems use Active Directory for SSO. Linux
provides the System Security Services Daemon (SSSD) to connect to Active
Directory.

Defending Against Network Attacks

It would be nice if we lived in a world where we could connect networks
together and be able to trust others to respect our systems. Unfortunately,
such a world doesn’t exist. If our Linux systems are connected to a network,
we need to be concerned about network attacks. If our network is connected
to a public network, such as the Internet, we need to be extremely concerned
about network attacks.

As with most of the topics discussed in this book, network security is a huge
topic that can fill many volumes. Therefore, we will discuss basic steps
administrators can take to defend against network attacks. We will cover
several important areas of the Linux+ exam, including the following:

• Mitigating network vulnerabilities

• Implementing a firewall with firewalld

• Implementing a firewall with iptables

Let’s begin by discussing some steps to take to mitigate network
vulnerabilities.

Mitigating Network Vulnerabilities

The good news is that there are some simple steps that system administrators
can take to mitigate the threat to Linux systems from network attacks. These
include the following:

• Disabling unused services

• Installing security updates

Let’s first discuss staying abreast of current network threats.

Disabling Unused Services

One of the simplest steps administrators can take to mitigate threats from a
network attack is to disable unused network services. Depending on the
Linux distribution, there are probably a number of services running that do
not need to operate. To view a list of installed services and whether or not
they are running, enter systemctl list-unit-files at the shell prompt.
This command will list each service and its status, as shown here:

Images

In addition to systemctl, you can also use the nmap command to view open
IP ports on the Linux system. Again, each port that is open on the Linux
system represents a potential vulnerability. Some open ports are necessary;
others are not.

Images

NOTE The nmap package is usually not installed by default.

The syntax for using nmap is nmap -sT <host_IP_address> for a TCP port
scan and nmap -sU <host_IP_address> for a UDP port scan. In Figure 15-
11, the nmap utility is used to scan for open TCP ports.

Images

Figure 15-11 Using nmap to scan for open ports

Figure 15-11 shows a number of services running on the host that was
scanned. Use this output to determine what should be left running on the
system. To disable a service, use systemctl disable <service_name> to
ensure it will not start after reboot. Run systemctl stop <service_name>
to disable the running service.

Images

NOTE The legacy tool to manage services was called chkconfig. To check
the status of all daemons, run chkconfig -l. To disable the service, run
chkconfig <service_name> off.

The netstat utility also lists open ports. An example of using netstat with
the -l option to view a list of listening sockets on a Linux host is shown in
Figure 15-12.

Images

Figure 15-12 Using netstat to view a list of listening sockets

Similar to netstat, using the -i option with lsof will also list network
services and their ports, as shown here:

Images

Images

Installing Security Updates

One of the most important steps administrators can take to defend against
network attacks is to regularly install operating system updates. A simple
fact of life that we have to deal with in the IT world is that software isn’t
written perfectly. Most programs and services have some defects. Even the
Linux kernel has defects that can represent serious security risks.

As software is released and used, these defects are discovered by system
administrators, users, and hackers. As they are discovered, updates are
written and released to fix the defects. Most distributions can be configured
to automatically check and install updates. The tool used to update the
system will vary depending on which Linux distribution you are using.

Implementing a Firewall with firewalld

Today, most organizations connect their corporate networks to the Internet.
Doing so enhances communications and provides access to a wealth of
information. Unfortunately, it also exposes their network to a serious
security threat. If users can reach the Internet, an uninvited person from the
Internet can also reach into their network. To keep this from happening, the
organization needs to implement a firewall.

The two types are network-based firewalls and host-based firewalls. A host-
based firewall controls traffic in and out of a single computer system,
whereas a network-based firewall is used to control traffic in and out of an
entire network.

In this part of the chapter, you spend some time learning how to use Linux in
both capacities. We’ll discuss the following topics:

• How firewalls work

• Implementing a packet-filtering firewall

How Firewalls Work

So what exactly is a firewall? A firewall acts like a gatekeeper between
networks. Its job is to monitor the traffic that flows between the networks,
both inbound and outbound. The firewall is configured with rules that define

the type of traffic allowed. Any traffic that violates the rules is denied, as
shown in Figure 15-13.

Images

Figure 15-13 How a firewall works

Firewalls can be implemented in a variety of ways. One of the most
common types is a packet-filtering firewall, where all traffic moving
between the private and public networks must go through the firewall. As it
does, the firewall captures all incoming and outgoing packets and compares
them against the access control list (ACL) configured by the network
administrator.

The firewall ACL filters traffic based on the origin address, destination
address, origin and destination ports, protocol used, or type of packet. If a
packet abides by the rules, it is forwarded on to the next network. If it does
not, it is logged and dropped, as shown in Figure 15-14.

Images

Figure 15-14 Using a packet-filtering firewall

Packet-filtering firewalls are considered stateless firewalls, which means
they do not look at the state of the connection. Stateful firewalls maintain the
state of the connection and are commonly used today. For example, if traffic
is normally blocked from the Country of Belchre, traffic initiating from the
Country of Belchre will be rejected.

But if a trusted user within the LAN requests a connection with the Country
of Belchre, they will be allowed, and traffic related to this connection will be
allowed because it was initiated by an internal, trusted user. This takes a
huge part of the workload off the network administrator. They no longer
have to respond to hundreds of requests to adjust the ACL for users who
justifiably need to reach normally banned websites.

But this also introduces phishing e-mails. If a hacker can trick a trusted user
into clicking a link that forwards to a banned website in the Country of

Belchre that the hacker controls, the hacker now has breached the firewall
and now can attack the victims.

Images

NOTE There are also kernel-proxy firewalls, web-application firewalls,
application-level gateways, circuit-level next-generation firewalls, and so
on. These operate higher up the OSI model and are beyond the scope of the
CompTIA Linux+ exam.

Implementing a Packet-Filtering Firewall

A Linux system can be configured to function as many network devices,
such as routers or firewalls. Currently, there are many firewall appliances on
the market based on Linux. For our purposes, we will focus on creating a
basic packet-filtering firewall using firewalld and the legacy tool
iptables.

The first step in setting up a packet-filtering firewall on a Linux system is to
design the implementation. Answer the following questions when designing
the firewall:

• Will the firewall deny all incoming traffic except for specific allowed
traffic?

• Will all outgoing traffic be blocked except for specific types or
destinations?

• What ports must be opened on the firewall to allow traffic through from
the outside? For example, is there a publicly accessible website behind the
firewall? If so, then ports 80 and 443 must be opened.

Next, configure the firewall using the firewalld service. The firewalld
service offers zone-based firewalling, making it easier to create common
setups. The firewalld service supports IPv4 and IPv6 and is part of
systemd. Also, permanent and temporary or runtime configurations are
available.

To enable the firewalld service, use systemctl, as shown here:

Images

If there are multiple network interfaces, IP forwarding needs to be enabled,
as shown next:

Images

Images

NOTE For IPv6 forwarding, set
/proc/sys/net/ipv6/conf/all/forwarding to 1. This will enable
forwarding for all network interfaces enabled on the system.

The firewalld feature has several predefined zones of trust to manage IP
packets. Table 15-4 lists some of the common zones available with
firewalld.

Images

Table 15-4 The firewalld Zones

Use the firewall-cmd tool to display available zones and to switch to a
different default. For example, here’s how to change from the home zone to
internal zone:

Images

To list all the configured services and interfaces allowed through the zone,
run the firewall-cmd --list-all option, as shown here:

Images

Images

After the system is rebooted, the firewall settings return to their default
values. To add a service and make the runtime values permanent, use the --
permanent flag:

Images

The --reload option makes it so that the change occurs immediately;
otherwise, the change does not take effect until reboot.

Images

NOTE Firewall issues can result from the --reload operation. It only
loads the known existing service, so if you did not use --permanent, the
telnet service would not be enabled. For example, telnet is not enabled

Images

Exercise 15-3: Implementing Network Security Measures with
firewalld

In this exercise, you practice using firewalld settings by adding web
services to the public zone. You can perform this exercise using the virtual
machine that comes with this book. Complete the following steps:

Images

VIDEO Please watch the Exercise 15-3 video for a demonstration on how
to perform this task.

1. Boot your Linux system and log in as the root user. Install firewalld
if necessary.

2. Set the firewall to use the public zone as follows:

Images

3. Add web services and secure web services to the public zone:

Images

4. Confirm that you were successful in adding these services:

Images

5. Learn more about firewalld by running firewall-cmd --help.

Implementing a Firewall with iptables

The firewalld service is actually the front end to iptables, but firewalld
can maintain existing connections even after a change in settings. Most
Linux distributions include iptables, but if yours does not, you can
download it from https://www.netfilter.org or from the vendor’s repositories.
The Linux kernel itself completes the packet-filtering tasks using
netfilter.

The netfilter infrastructure uses the concept of “tables and chains” to
create firewall rules. A chain is simply a rule that is implemented to
determine what the firewall will do with an incoming packet. The
netfilter infrastructure uses the filter table to create packet-filtering rules.
Within the filter table are three default chains:

• FORWARD Contains rules for packets being transferred between networks
through the Linux system

• INPUT Contains rules for packets that are being sent to the local Linux
system

• OUTPUT Contains rules for packets that are being sent from the local
Linux system

Each chain in the filter table has four policies:

• ACCEPT

• DROP

• QUEUE

• REJECT

To create a chain of multiple rules, each rule in a chain is assigned a number.
The first rule you add is assigned the number 1. The iptables utility can

https://www.netfilter.org/

add rules, delete rules, insert rules, and append rules. The syntax for using
iptables is

Images

Use the following commands with iptables:

• -L Lists all rules in the chain

• -N Creates a new chain

You can work with either the default chains listed previously or create your
own chain. You create your own chain by entering iptables -N
<chain_name>. You can add rules to a chain by using the -A option. You can
also use one of the other options listed here:

• -I Inserts a rule into the chain

• -R Replaces a rule in the chain

• -D Deletes a rule from the chain

• -F Deletes all the rules from the chain (called flushing)

• -P Sets the default policy for the chain

Images

EXAM TIP You should be comfortable with the iptables options listed in
Table 15-5.

Images

Table 15-5 Some iptables Commands

You can also use the following options with iptables:

• -p Specifies the protocol to be checked by the rule. You can specify all,
tcp, udp, or icmp.

• -s <ip_address/mask> Specifies the source address to be checked. If
you want to check all IP addresses, use 0/0.

• -d <ip_address/mask> Specifies the destination address to be checked.
If you want to check all IP addresses, use 0/0.

• -j <target> Specifies what to do if the packet matches the rule. You can
specify the ACCEPT, REJECT, DROP, or LOG action.

• -i <interface> Specifies the interface where a packet is received. This
only applies to INPUT and FORWARD chains.

• -o <interface> Specifies the interface where a packet is to be sent.
This applies only to OUTPUT and FORWARD chains.

Images

NOTE The options presented here represent only a sampling of what can
be done with iptables. To see all the options available, see the iptables
man page.

The best way to learn how to use iptables is to look at some examples.
Table 15-5 has some sample iptables commands to start with.

You can use iptables to create a sophisticated array of rules that control
how data flows through the firewall. Most administrators use the -P option
with iptables to set up the firewall’s default filtering rules. Once the
default is in place, use iptables to configure exceptions to the default
behavior needed by the particular network.

Remember that any rules created with iptables are not persistent. If you
reboot the system, they will be lost by default. To save the rules, use the
iptables-save command to write firewall tables out to a file. Then use the
iptables-restore command to restore the tables from the file created.

Exercise 15-4: Implementing Network Security Measures with iptables

In this exercise, you practice scanning for open IP ports and implementing a
simple host-based firewall. Perform this exercise using the virtual machine

that comes with this book.

Images

VIDEO Please watch the Exercise 15-4 video for a demonstration on how
to perform this task.

1. Boot your Linux system and log in as your student1 user.

2. Open a terminal session and switch to your root user account by
entering su - followed by the password student1.

3. Scan your system for open ports by completing the following steps:

a. At the shell prompt, enter nmap -sT <your_IP_address>. What TCP/IP
ports are in use on your system?

b. At the shell prompt, enter nmap -sU <your_IP_address>. What UDP/IP
ports are in use on your system?

4. Configure a simple firewall with iptables by doing the following:

a. From a remote system, ping your Linux system and verify that it
responds.

b. Open a terminal session.

c. At the shell prompt, su - to root.

5. Configure the kernel to use the iptables filter by entering modprobe
iptable_filter at the shell prompt.

6. List the current rules for the filter table by entering iptables -t filter
-L at the shell prompt.

7. At the shell prompt, enter iptables -t filter -A INPUT -s 0/0 -p
icmp -j DROP. This command creates a rule that will drop all incoming
packets using the ICMP protocol from any source destined for the local
system.

8. View your new rule by entering iptables -t filter -L at the shell
prompt. You should see the following rule added to your INPUT chain:

DROP icmp -- anywhere anywhere

9. Using your remote system, ping your Linux system’s IP address. The
packets should be dropped, as shown in this sample output:

Images

Configuring a Firewall with UFW

The uncomplicated firewall (UFW) makes firewall configuration simple.
After installing UFW, start with a simple set of rules:

Images

This example blocks all incoming traffic except for SSH and HTTP. The ufw
status command will show all the rules that are enabled as well as whether
ufw is active or inactive. Default firewall policies can be defined within the
file /etc/default/ufw, such as whether or not to enable IPv6 and whether
to drop or reject packets.

To override the default UFW rules, create before.rules and after.rules
files within the /etc/ufw directory. Before rules run before the user settings
when UFW runs, such as adding ping or loopback features. After rules run
after the administrator’s command-line rules.

Images

NOTE For IPv6 settings, there are also before6.rules and after6.rules
files within /etc/ufw.

Firewall Configuration with nftables

The nftables firewall was developed by netfilter.org, the organization that
maintains iptables, to fix performance and scalability issues that iptables
firewalls run into. For example, iptables works great for IPv4, but a

separate ip6tables was created for IPv6 firewall rules. nftables can handle
both IPv4 and IPv6 networks.

If you used iptables, you can convert these rules to nftables by using the
iptables-translate utility. Some example nftables rules follow.

To allow incoming SSH connections, run

Images

To allow incoming HTTP and HTTPS traffic, run

Images

Encrypting Files with GPG

Just as you can encrypt network transmissions between Linux systems using
SSH, you can also use encryption to protect files in the Linux filesystem.
There are a wide variety of tools to do this. Some are open source; others are
proprietary. A great utility for encrypting files is the open source GNU
Privacy Guard (GPG) utility. We’ll discuss the following topics in this
section:

• How GPG works

• Using GPG to encrypt files

• Using GPG to revoke keys

Let’s begin by discussing how GPG works.

Images

EXAM TIP Knowledge of GPG is not part of the requirements on the
CompTIA Linux+ exam. This section was added for your information.

How GPG Works

GNU Privacy Guard (GPG) is an open source implementation of the
OpenPGP standard (RFC 4880). It allows users to encrypt and digitally sign
data and communications. For example, users can encrypt files and digitally
sign e-mail messages.

GPG provides a cryptographic engine that can be used directly from the
shell prompt using the gpg command-line utility. It can also be called from
within shell scripts or other programs running on the system. For example,
GPG is integrated into several Linux e-mail clients such as Evolution and
KMail as well as instant messaging applications such as Psi.

GPG supports many encryption algorithms, including AES, 3DES,
Blowfish, MD5, SHA, and RSA.

Images

NOTE The gpg.conf file is also located in the ~/.gnupg directory.
You can use this file to customize the way GPG works on your system.

Using GPG to Encrypt Files

To encrypt a file using GPG, follow these steps:

1. Use GPG to generate your keys. To do this, enter gpg --gen-key at the
shell prompt. An example is shown here:

Images

2. Select the type of key you want to create. Usually you will use the
default option (1), which uses RSA and RSA. You are prompted to specify
the size of the key, as shown here:

Images

3. Specify the size of key you want to create. Using the default size of 2048
bits is usually sufficient. You are prompted to configure the key lifetime, as
shown here:

Images

4. Specify when the key will expire. As shown in step 3, you can specify
that the key expire in a certain number of days, weeks, months, or years.

5. Construct your user ID for the key. The first parameter you need to
specify is your real name. The name you specify is very important because it
will be used later during the encryption process. In the next example, I
entered cgreer for the real name:

Images

6. When prompted, enter your e-mail address.

7. When prompted, enter a comment of your choosing. You are prompted
to confirm the user ID you have created for the key. An example is shown
here:

Images

8. If the information is correct, enter O to confirm the ID. You are prompted
to enter a passphrase for the key.

9. Enter a unique passphrase for the key. After doing so, you are prompted
to perform various actions on the system while the key is generated. An
example is shown here:

Images

10. Move your mouse and type on the keyboard. GPG uses these actions to
generate random numbers to make the key. If you are not doing enough,
you’ll be prompted to increase activity to generate enough entropy to create
the key. An example is shown here:

Images

At this point, the key pair has been generated! The key files are stored in the
~/.gnupg directory in the user’s home directory. The following files are
created in this directory:

• secring.gpg The GPG secret keyring

• pubring.gpg The GPG public keyring

• trustdb.gpg The GPG trust database

To create a backup of your GPG key pair, enter the following at the shell
prompt:

Images

This is shown in the following example:

Images

For security, do not leave this file on your hard disk. Instead, copy it to a
USB flash drive and lock it away. This will allow you to restore the private
key should the original get corrupted.

Now use the key pair to encrypt files and messages. For example, to encrypt
a file in the Linux filesystem, do the following:

1. At the shell prompt, enter gpg -e -r <key_user_name> <filename>.
As shown here, I encrypted mytestfile.txt. The -e option tells GPG to
encrypt the file. Remember that I specified a key username of cgreer when
I created the key user ID, so that’s what I enter here.

Images

2. Use the ls command to view the new encrypted file that GPG created.
The original file is left intact. The new file will have the same filename as
the original file with a .gpg extension added. In the example here, the name
of the new file is mytestfile.txt.gpg.

Once the file has been encrypted, it can then be decrypted using the gpg
command. The syntax is

Images

For example, to decrypt the mytestfile.txt.gpg file created earlier, enter

Images

This is shown in the following example:

You need a passphrase to unlock the secret key for

user: "cgreer (<cgreer@openSUSE>"

2048-bit RSA key, ID FB8BF16C, created 2023-01-24 (main key ID

9DF54AB2)

Images

At this point, you are able to encrypt and decrypt files on your local system.
But what do you do if you need to exchange encrypted files with someone
else and you want both of you to be able to decrypt them? To do this, you
must exchange and install GPG public keys on your systems.

To do this, copy your public keys to a public key server on the Internet. This
is done by entering gpg --keyserver hkp://subkeys.pgp.net --send-
key <key_ID> at the shell prompt. Notice that this command requires you to
know the ID number associated with your GPG public key. This number is
displayed when you initially create the GPG key pair; you can generate it
again from the command line by entering gpg --fingerprint
<key_owner_email>, as shown here:

Images

In this example, the output was saved from the command to a file named
key_ID.txt to keep it handy, but this is optional. The ID number of the key
is contained in the first line of output from the command. The number
needed appears in bold in this example.

Once you have the ID number, you can then copy your GPG public key to a
public key server on the Internet. Using the preceding information for my
system, enter the following at the command prompt:

Images

This option works great if you want to be able to exchange keys with a large
number of other users. However, if you are only concerned about doing this
with a limited number of people, just directly exchange keys between
systems.

To do this, users can export public keys and send them to each other. To do
this, enter the following at the shell prompt:

Images

For example, to export the public key to the file named gpg.pub created
earlier, enter the following:

Images

Each user can then copy their key file to the other users. For example, to
send a key to the charly user account on another Linux host named fedora,
enter the following:

Images

Once this is done, each user can import the other users’ public keys into
their GPG keyring using the gpg --import <public_key_filename>
command. For example, use scp to copy the public key file from the
openSUSE system to the fedora system, and then use gpg to import the
public key:

Images

Remember, each user needs to repeat this process. Then they can use each
other’s GPG keys to encrypt and decrypt files. You can view the keys in
your GPG keyring by using the gpg --list-keys command, as shown in
the following example:

Images

In this example, you can see that the public key created earlier on openSUSE
is now imported into the charly user’s GPG keyring on fedora. The
keyring file itself is located in the ~/.gnupg/ directory within my home
directory and is named pubring.gpg.

Using GPG to Revoke Keys

Before we end this chapter, we need to discuss the topic of key revocation.
From time to time, you may need to revoke a key, which withdraws it from
public use. This should be done if the key becomes compromised or gets
lost, or if you forget the passphrase associated with the key.

To revoke a key, you create a key revocation certificate. As a best practice,
you should create a key revocation certificate immediately after initially
creating your key pair. This is done in case something gets corrupted and the
revocation certificate can’t be created should it be required for some reason
later on. Creating the key revocation certificate doesn’t actually revoke the
key pair; only when you issue the key revocation certificate does the key get
revoked. Therefore, the key revocation certificate is a placeholder just in
case it’s needed later.

To create (not issue) the key revocation certificate, enter the following at the
shell prompt:

Images

Remember, use the --fingerprint option with the gpg command to view
the key ID number. In the example that follows, a key revocation certificate
is created for the GPG key pair generated for the charly user on the fedora
system:

Images

Avoid keeping the key revocation certificate on your system’s hard disk.
Instead, copy it to the same flash drive as your key pair backup and lock it
away! If someone were to get a hold of this file, they could revoke the
certificate without the administrator’s knowledge or consent.

Images

NOTE Again, knowledge of GPG is not part of the requirements on the
CompTIA Linux+ exam. This section was added for your edification.

So what should you do if the certificate actually does get compromised and
you end up needing to revoke it? Import the revocation certificate in the
same manner we discussed for standard certificates. Enter gpg --import
<revocation_certificate_filename> at the shell prompt:

Images

Once this is done, verify that the key was revoked by entering gpg --list-
keys <key_ID> at the shell prompt. If you used the manual method
discussed earlier in this chapter to distribute the public key, you must import
the key revocation certificate on any other systems where your public key
was imported.

If you are using a public key server on the Internet to distribute your keys to
other users, you would need to issue the key revocation certificate there as
well. Enter gpg --keyserver <public_key_server_URL> --send
<key_ID> at the shell prompt. This lets everyone who is using your public
key know that the key has been compromised and should no longer be used.

Exercise 15-5: Using GPG to Encrypt Files

In this exercise, you use GPG to encrypt a file and send it to a second Linux
system. Then, you export the public key, copy it to the second Linux system,
and decrypt the file that was sent. You’ll need at least two Linux systems for
this exercise. Use two live Linux systems, two Linux virtual machines, or a
mixture of both.

Images

VIDEO Please watch the Exercise 15-5 video for a demonstration on how
to perform this task.

Complete the following steps:

1. Generate your GPG key pair by following these steps:

a. Boot your first Linux system and log in as a standard user.

b. Open a terminal session.

c. Enter gpg --gen-key at the shell prompt.

d. When prompted to select the type of key you want to create, press Enter
to use the default option (1), which uses RSA and RSA.

e. When prompted to specify the size of the key, press Enter to use the
default size of 2048 bits.

f. When prompted to specify when the key will expire, press Enter to
select the default option (0), which specifies that the key never expires.

g. Enter y when prompted to confirm this selection.

Images

NOTE We’re doing this for demonstration purposes. In the real world, you
should configure your keys to expire after a certain length of time. That way,
if your key ever gets compromised, it will become invalid after a period of
time.

h. Construct the user ID for the key by first specifying a username that is at
least five characters long. Write down the username you entered because
you will need it later.

i. When prompted, enter your e-mail address. Write down the e-mail
address you entered because you will need it later.

j. When prompted, enter your full name as a comment.

k. When prompted to confirm the user ID you created for the key, enter O
(the letter, not a zero) to confirm it.

l. When prompted to enter a passphrase for the key, enter a unique
passphrase.

m. When prompted, move the mouse, type characters on your keyboard, or
open and close your optical disc drive door. After you have done this, your
key pair is generated!

2. Encrypt a file with GPG by doing the following:

a. At the shell prompt, enter gpg -e -r <key_user_name>
mytestfile.txt. Replace <key_user_name> with the real name you entered
when creating your key. You created the mytestfile.txt file in Exercise
15-1. If you don’t have this file, create a new one with this name.

b. At the shell prompt, use the ls command to verify that the
mytestfile.txt.gpg file was created.

3. Decrypt the file you just created by doing the following:

a. Enter the following at the shell prompt to decrypt the file:

Images

b. Use the cat command to display the contents of the
mytestfile.txt.decrypted file and verify that it matches the content of the
original file.

4. Send the encrypted file to a different system and decrypt it there by
doing the following:

a. Boot your second Linux system and log in as a standard user.

b. Use the ping command to verify that the second Linux system can
communicate over the network with the first Linux system, where you create
the GPG key pair.

c. Switch back to your first Linux system.

d. From the shell prompt of your first Linux system, export your key by
entering the following:

Images

e. Use the scp command to copy the gpg.pub and mytestfile.txt.gpg
files from your first Linux system to your second Linux system.

f. Switch over to your second Linux system.

g. Verify that the gpg.pub file was copied to your user’s home directory.

h. Import the public key from your first Linux system into the GPG
keyring by entering gpg --import ~/gpg.pub at the shell prompt.

i. Verify that the public key was imported by entering gpg --list-keys at
the shell prompt.

j. Decrypt the encrypted file you copied over from the first Linux system
by entering the following at the shell prompt:

Images

k. When prompted, enter the passphrase you assigned to the GPG key
when you created it on the first system.

l. Use the cat command to display the contents of the
mytestfile.txt.decrypted file and verify that it matches the content of the
original file on the first Linux system.

5. Perform maintenance tasks on your GPG key pair by doing the
following:

a. Create a backup of your GPG key pair by entering the following at the
shell prompt:

Images

b. Create a key revocation certificate by entering the following at the shell
prompt:

Images

Remember, you can use the --fingerprint option with the gpg command to
view the key ID number.

Chapter Review

This chapter covered how to use encryption to secure data on a Linux
system and network security systems. We first looked at encrypting network
communications with SSH, then explored high-available networks with
bonding, and then reviewed defending networking attacks using firewalld
and iptables.

Be familiar with the following key facts about network security:

• With symmetric encryption, the key used to encrypt a message is the
same key used to decrypt the message. The sender and the receiver must
both have the exact same key.

• Symmetric encryption processes much faster than asymmetric encryption.

• One of the difficulties associated with symmetric encryption is how to
securely distribute the key to all the parties that need to communicate with
each other.

• Asymmetric encryption uses two keys instead of one: the public key and
the private key.

• Data that has been encoded with the public key can be decoded only with
its private key. Data that has been signed with the private key can be verified
only with its public key.

• A certificate authority (CA) is responsible for issuing and managing
encryption keys.

• The private key is given only to the key owner.

• The public key can be made available to anyone who needs it.

• The primary role of the CA is to verify that parties involved in an
encrypted exchange are who they say they are.

• Administrators can mint their own certificates, called self-assigned
certificates.

• Hashing is used for file integrity checking. Hash values are unique to
every file. When this fails, it is called a collision.

• Popular hash algorithms include MD5 and SHA.

• SSH uses private/public key encryption along with secret key encryption:

• The SSH client first creates a connection with the system where the SSH
server is running on IP port 22.

• To use the SSH client on your local computer, connect to the sshd
daemon on the remote Linux system by entering ssh -l <user_name>
<ip_address> at the shell prompt.

• VPNs use IPSec in tunnel mode to provide encryption and authentication.

• Tunnel mode is best over untrusted networks, such as from home to the
office.

• VPNs in transport mode use IPSec to encrypt packets and are a good
solution over trusted networks.

• High-availability networks are implemented within Linux by way of
bridging or bonding technologies.

• Network bridging provides fault tolerance.

• Network bonding boosts network throughput.

• Use the brctl command to set up a network bridge.

• Network bonding requires updating network scripts and enabling the
bonding policy.

• Bonding options include active-passive, aggregation, and load balancing.

• Single sign-on (SSO) allows users the convenience of using one
username and password to access their data within their entire organization.

• Popular SSO services include RADIUS with dial-up modem access,
LDAP for vendor-neutral environments, Kerberos, which hides passwords
by using tickets that expire, and TACACS+ for high availability and
reliability.

• Linux systems can be configured as firewalls using firewalld, iptables,
netfilter, nftables, or ufw.

• The nmap, netstat, and lsof -i utilities are used to examine vulnerable
open IP ports.

• To enable IP forwarding, run echo 1 >
/proc/sys/net/ipv4/ip_forward.

• The firewalld feature offers nine default zones, including work, home,
internal, external, dmz, and public.

• Run firewall-cmd --get-default-zone to view the current
zone setting.

• Run firewall-cmd --permanent to make runtime values permanent after
reboot.

Questions

1. Which of the following statements are true of symmetric encryption?
(Choose two.)

A. It uses a private/public key pair.

B. Both the sender and the recipient must have a copy of the same key.

C. RSA is a form of symmetric encryption.

D. Blowfish is a form of symmetric encryption.

2. Which tools can scan for open network ports? (Choose two.)

A. tcpwatch

B. lsof

C. nmap

D. wireshark

E. webgoat

3. Which host key files store the private keys used by the SSH version 2
server? (Choose two.)

A. /etc/ssh/ssh_host_key

B. /etc/ssh/ssh_host_key.pub

C. /etc/ssh/ssh_known_hosts

D. /etc/ssh/ssh_host_rsa_key

E. /etc/ssh/ssh_host_dsa_key

4. Which parameter in the /etc/ssh/sshd_config file specifies which
version of SSH the sshd daemon should use?

A. HostKey

B. Protocol

C. SSHVersion

D. ListenAddress

5. Which parameter in the /etc/ssh/sshd_config file configures the SSH
server to disable root logins?

A. RootAccess

B. AllowRootLogin

C. PermitRootLogin

D. DenyRootLogin

6. Which option to iptables will list the current firewall rules?

A. iptables -N

B. iptables -L

C. iptables -I

D. iptables -R

7. Which of the following shell commands will load the SSH client and
connect as the sseymour user to an SSH server with an IP address of
10.0.0.254?

A. sshd -l sseymour 10.0.0.254

B. ssh -u sseymour 10.0.0.254

C. ssh -l sseymour 10.0.0.254

D. sshd -u sseymour 10.0.0.254

8. Which of the following are hashing algorithms? (Select two.)

A. RSA

B. DSA

C. MD5

D. SHA

9. You’ve just created a DSA private/public key pair for use with SSH
public key authentication. What is the name of the public key file?

A. ~/.ssh/id_rsa

B. ~/.ssh/id_dsa

C. ~/.ssh/id_rsa.pub

D. ~/.ssh/id_dsa.pub

10. You’ve copied your RSA public key to the home directory of a user on
an SSH server. Which file do you need to add the public key to in order to
enable public key authentication?

A. ~/.ssh/authorized_keys

B. /etc/ssh/authorized_keys

C. ~/.ssh/id_rsa

D. ~/ssh_host_key.pub

Answers

1. B, D. With symmetric encryption, both the sender and the recipient must
have a copy of the same key. Blowfish is a form of symmetric encryption.

2. B, C. Use nmap and lsof -i to view open network ports on a system.

3. D, E. The private keys used by the SSH version 2 server are stored in
/etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key. The
private keys for SSH version 1 are stored in /etc/ssh/ssh_host_key.

4. B. The Protocol parameter in the /etc/ssh/sshd_config file specifies
which version of SSH the sshd daemon should use.

5. C. The PermitRootLogin parameter is set to no to disallow logging in as
root.

6. B. Use iptables -L to list the current firewall ruleset with iptables.

7. C. The ssh -l sseymour 10.0.0.254 command will load the SSH
client and connect as the sseymour user to an SSH server with an IP address
of 10.0.0.254.

8. C, D. The integrity checking algorithms include SHA and MD5. RSA
and DSA are asymmetric encryption algorithms.

9. D. The ~/.ssh/id_dsa.pub file is the DSA public key that can be used
for SSH public key authentication.

10. A. You need to add the public key to the ~/.ssh/authorized_keys file
in the home directory of the user you want to authenticate as using public
key authentication.

CHAPTER 16
Securing Linux

In this chapter, you will learn about

 Securing the system

 Controlling user access

 Managing system logs

 Enhancing group and file security

There were only about five of us, so we were not a threat. We were hardly

noticed.

—Evelyn Boyd Granville, IBM

In today’s world, security is a key issue in every organization. A Linux

system administrator needs to be aware of the security threats affecting the

architecture. This chapter covers how to increase the security of the Linux

system.

Images

EXAM TIP Computer system security is an ever-evolving topic. The

security issues of recent years, such as ransomware and identity theft, teach

us to prepare for the security incidents of tomorrow. This is reflected in

your CompTIA Linux+ exam. Do not be overly concerned with specific

security threats. Instead, focus on commands and key security principles.

Securing the System

One of the most important and most frequently overlooked aspects of Linux

security is securing the system itself. Topics addressed here include

 Securing the physical environment

 Securing access to the operating system

Securing the Physical Environment

Convenience or security? That is the question. Many firms desire easy

access to their computer systems. Organizations must balance security with

convenience. If data on the system is mission critical or contains sensitive

information, it should be less convenient to access, thus keeping it more

secure.

Consider scenarios such as the following when determining physical

access to Linux systems:

 A rogue supplier steals the hard drive from a server containing clients’ tax

identification numbers.

 A rogue employee steals week-old backup tapes from the shelf located

outside the secure server room. The data contains customer logins and

password hints.

 A passerby steals a pancake-style server from an unlocked closet, gleaning

private health records of patients.

As a Linux administrator, one of the most important steps you can take is

to limit who can access data-processing systems. Servers need the highest

degree of physical security and should be locked in a server room. Access

to the server room should be strictly controlled.

Images

NOTE Passwords combined with biometric systems create multifactor

authentication (MFA). Biometric systems scan retinas, match fingerprints,

or observe voice patterns to control access to data.

In addition to controlling access to the office, you can further protect

your organization’s workstations and servers by securing access to the

operating system.

Securing Access to the Operating System

After physically securing access to computer systems, the next line of

defense is the access controls built into the Linux operating system itself.

Of course, Linux provides user accounts and passwords to control who can

do what with the system. This is an excellent feature, allowing users to

protect their data no matter their level of responsibility or the criticality of

the data. After the end users’ work is complete, teach them to log out or

lock their screen (a session lock, as shown in Figure 16-1) as a good

security practice to protect their data.

Images

Figure 16-1 Locking the desktop

Images

CAUTION You should never leave a server logged in. If you do, at least

use a screensaver that requires a password to resume operations. Otherwise,

best security practice is that if the user is not using the server console, they

should log out.

To allow users to log out and leave without killing an important process,

use the nohup command to initially load the command. Any process

loaded by nohup will ignore any hang-up signals it receives, such as

those sent when logging out. The syntax for using nohup is nohup

<command> & . For example, in Figure 16-2, the find -name named

& command has been loaded using nohup , allowing the find

command to continue to run even if the shell were logged out.

Images

Figure 16-2 Using nohup

Finally, administrators need to also protect servers from data loss.

Strategic plans could be leaked to competitors, harming the organization’s

image. One method to protect data leaks is to disable USB ports. In Linux

you can do this by blocklisting or removing the USB module after Linux

installation and every kernel update:

Images

Other Linux hardening security measures include

 Detecting threats through security scanning

 Avoiding threats by disabling or removing insecure services like Telnet and

FTP

 Mitigating threats by removing unused packages and applications

 Blocking threats by configuring the host firewall, such as UFW

 Securing service accounts by enabling the nologin shell in

/etc/passwd

Successful security practices boil down to end-user training. Social

engineering attacks mitigate technical controls put in place by the system

administrator to secure the network. If end users do not cooperate, corporate

policies such as acceptable use policies and computer usage policies must

be enforced.

Controlling User Access

A key aspect of both Linux workstation security and Linux server security

is to implement and use user access controls to constrain what users can do

with the system. Earlier in this book, we discussed how to create and

manage users, groups, and permissions to do this. However, you can take

additional measures to increase the security of your systems. In this section,

we review the following:

 To root or not to root?

 Implementing a strong password policy

 Locking accounts after failed authentications

 Configuring user limits

 Disabling user login

 Security auditing using find

Let’s begin by discussing the proper care and feeding of the root user

account.

To Root or Not to Root?

As discussed earlier in this book, every Linux system, whether a

workstation or a server, includes a default administrator account named

root . This account has full access to every aspect of the system. As such,

it should be used with great care. As a Linux+ candidate, you need

understand the following:

 Proper use of the root user account

 Using su

 Using sudo

 Using pkexec

Proper Use of the root User Account

A key mistake made by new Linux users is excessive use of the root

account. There’s a time and a place when the root user account should be

used; however, most of the work on a Linux system should be done as a

non-root user. The rule of thumb is this: only use root when absolutely

necessary. If a task can be completed as a non-root user, then use a non-root

user account.

Why is the proper use of the root user account of concern? Imagine

the havoc an intruder could wreak if they were to happen upon an

unattended system logged in as root ! All of the data on the system could

be accessed and copied. Major configuration changes could be made to the

daemons running on the system. Heaven only knows what kind of malware

could be installed.

The point is that a system logged in as root represents a serious

security risk. Everyone, including the system administrator, should have a

standard user account that they always use to access the system. If the

system administrator requires root privilege, they should temporarily use

the privilege and then return back to normal privilege. Linux provides three

ways to do this that are important for the CompTIA Linux+ exam: su ,

sudo , and pkexec .

Using su

The su command stands for “substitute user.” This command allows you

to change to a different user account at the shell prompt. The syntax is su

<options> <user_account> . If no user account is specified in the

command, su assumes switching to the root user account. Here are

some of the more useful options you can use with su :

 - Loads the target user’s profile. For example, when you use the su -

command to switch to the root user account, this also loads root ’s

environment variables.

 -c <command> Temporarily switches to the target user account, runs

the specified command, and returns to the original account.

 -m Switches to the target user account but preserves the existing profile.

Everyone with the root password can use su to switch to the root

user, but providing all users root privileges is a very poor security

practice. Also, becoming root with su will not log the activities of the

user. Sometimes users need root access temporarily to add a printer or a

new network device. There must be a way to do this without having to

locate the system administrator, and that method is with sudo .

Using sudo

Suppose there is a power user on a Linux system. This user might be a

programmer, a project manager, or a database administrator. A user in this

category may frequently need to run some root-level commands. To allow

them to run a limited number of root-level commands, and to log their

administrator activity, you can teach them to use sudo .

The sudo command allows a given user to run a command as a

different user account. As with su , it could be any user account on the

system; however, it is most frequently used to run commands as root .

The sudo command reads the /etc/sudoers file to determine what

user is authorized to run which commands. This file uses the following

aliases to define who can do what:

 User_Alias Specifies the user accounts allowed to run commands

 Cmnd_Alias Specifies the commands that users can run

 Host_Alias Specifies the hosts that users can run commands on

 Runas_Alias Specifies the usernames that commands can be run as

To edit the /etc/sudoers file, run either sudo -e

/etc/sudoers , sudoedit /etc/sudoers or simply the

visudo command as the root user. The /etc/sudoers file is

loaded in using the default editor, which is usually vi but may be

modified using the EDITOR , VISUAL , or SUDO_EDITOR environment

variable. Your changes are written to /etc/sudoers.tmp until

committed. This is shown in Figure 16-3.

Images

Figure 16-3 Editing /etc/sudoers with visudo

Images

NOTE To modify the default editor for programs like sudoedit , place

the following line into the user’s ~/.bashrc file:

EDITOR=/usr/bin/nano; export EDITOR

This example implements nano to be the default editor.

The /etc/sudoers file is configured by default such that users must

supply their personal password when using sudo , instead of the root

password like with su . This sudo feature makes the system more secure

because the root password is shared with fewer users.

To configure the /etc/sudoers configuration file, modify

User_Alias to define an alias containing the user accounts (separated

by commas) allowed to run commands as root . The syntax is

Images

For example, to create an alias named PWRUSRS that contains the

cheryl , theo , and aria user accounts, you would enter the

following in the /etc/sudoers file:

Images

Images

NOTE All alias names within /etc/sudoers must start with a capital

letter!

Next use Cmnd_Alias to define the commands, using the full path,

that you want the defined users to run. Separate multiple commands with

commas; for example, if the users are programmers who need to be able to

kill processes, define an alias named KILLPROCS that contains the

kill command, as shown here:

Images

Then use Host_Alias to specify which systems the users can run the

commands on. For example, to allow them to run commands on a system

named openSUSE, use the following:

Images

Finally, to glue the aliases together to define exactly what will happen,

the syntax is this:

Images

For example, to allow the specified users to run the specified commands

on the specified hosts as root , enter the following:

Images

Now that the updates to /etc/sudoers are complete, exit visudo

by pressing Esc and then enter :wq (this assumes that EDITOR is

defined as /usr/bin/vi). The visudo utility will verify the syntax

and, if everything is correct, will exit. At this point, the end users defined

within /etc/sudoers can execute commands as the root user by

entering sudo <command> at the shell prompt. For example, the

cheryl user could kill a process named vmware-toolbox (owned

by root) by entering sudo killall vmware-toolbox at the

shell prompt. After the cheryl user supplies her password, not the

root password, the process is killed.

You can also allow users to run sudo commands without a password.

The following entry in /etc/sudoers allows the user amos to run the

kill command without a password:

Images

User amos would still need a password to remove print jobs using the

lprm command.

Using pkexec

Similar to the sudo command, the pkexec command, a PolicyKit

feature, allows you to run a command as another user. PolicyKit is a toolkit

used to define and handle authorizations. If the user liara wants to view

the /etc/hosts file as user allen , she runs the following command:

Images

The /etc/hosts file is catenated after liara enters her password.

Implementing a Strong Password Policy

Another serious security weakness to organizations is the use of weak

passwords. A weak password is one that can be easily guessed or cracked.

Here are some examples:

 A last name

 A mother’s maiden name

 A birthday

 Any word that can be found in the dictionary

 Using “password” as the password

 Blank passwords

These types of passwords are used because they are easy to remember.

Unfortunately, they are also easy to crack. Administrators need to train their

users to use strong passwords, such as passphrases. A strong password uses

the following:

 Twelve or more characters (the longer the better!)

 A combination of numbers, special characters, and letters

 Upper- and lowercase letters

 Words not found in the dictionary

For example, a password such as M3n0v3l273!! is a relatively

strong password because it meets the criteria, but it is hard to remember. A

passphrase such as To &3 or NOT to &3 is strong and easier to

remember. The Linux password management utilities are configured by

default to check user passwords to ensure they meet the criteria for strong

passwords. For example, if you try to use a weak password with the

passwd command, you are prompted to use a stronger one, as shown

here:

Images

In addition to requiring the use of strong passwords, administrators

should also configure user accounts such that passwords expire after a

certain period of time. This is called password aging. Why age passwords?

The longer a user has the same password, the more likely it is to be

compromised. Forcing users to periodically change passwords keeps

intruders guessing. The length of time allowed for a given password varies

from organization to organization. More security-minded organizations

mandate password ages of 27–30 days. Less paranoid organizations use

aging of 90 or more days.

Images

NOTE NIST Special Publication 800-63B announced in March 2020 that

if you are using two-factor authentication (2FA), annual password changes

are sufficient in most circumstances.

Administrators can configure aging for passwords by using the chage

command. The syntax for using chage is chage <option>

<user> . The following options are available with chage :

 -m < days> Specifies the minimum number of days between password

changes

 -M < days> Specifies the maximum number of days between password

changes

 -W < days> Specifies the number of warning days before a password

change is required

For example, in Figure 16-4, the chage command has been used to

specify a minimum password age of 5 days, a maximum password age of

90 days, and 7 warning days for the ksanders user.

Images

Figure 16-4 Using chage to set password aging

Social Engineering Threats

Administrators should also train users on how to deal with social

engineering attempts. Social engineering is one of the most effective tools

in the intruder’s toolbox. Social engineering exploits human weaknesses

instead of technical weaknesses in the system. Here’s how a typical social

engineering exploit works.

The intruder calls an employee of an organization, posing as another

employee. The intruder tells the employee that he is “Fred” from Sales and

is on the road at a client site. He needs to get a very important file from the

server and cannot remember his password. He then asks the employee if he

can use their password “just this once” to get the files he needs.

Most employees want to be team players and help out in an emergency.

They are all too willing to hand out their password, granting the intruder

easy access to the system.

Finally, administrators need to mitigate the flood of phishing e-mails

plaguing organizations. Phishing e-mails appear to come from a legitimate

organization, such as a bank, a friend, or an e-commerce website. They

convince the user to click a link that takes them to a malicious website

where they are tricked into revealing their password.

Train users to hover their mouse over a link (without clicking it) to see

where the link actually leads. If the link is not pointing to a legitimate

organization’s URL, there’s a pretty good chance the message is an exploit.

The best way to combat social engineering is end-user training. Enforce

policies of not writing down passwords and not clicking e-mail links, as

well as shredding sensitive data and forwarding any calls asking for

passwords to the security office.

In addition to configuring password aging, you can also increase the

security of your Linux systems by limiting logins and resources. Let’s

review how this is done next.

Images

EXAM TIP Password security threat practices comprise a very important

topic, but are not an area of focus for the CompTIA Linux+ exam. Be sure

you know the columns and permissions of the /etc/passwd and

/etc/shadow files.

Locking Accounts After Failed Authentications

Administrators can secure user account access using Pluggable

Authentication Modules (PAM). PAM controls authentication of users for

applications such as login , ssh , su , and others. For example, use

PAM to enforce password strength by requiring specific password lengths

and characters or to disallow users from logging in from specific terminals.

Linux locates the PAM configuration files in the /etc/pam.d

directory. Configuration files for services such as login , ssh , and

others are located here. Partial contents of /etc/pam.d/sshd appear

as follows:

Images

The first column represents authentication tasks, grouped by account,

authentication, password, and session:

 account Provides account verification services (for example, whether

the password has expired and whether the user is allowed access to a

specific service)

 auth Used to authenticate the user, request a password, and set up

credentials

 password Requests the user to enter a replacement password when

updating the password

 session Manages what happens during setup or cleanup of a service

(for example, mounting the home directory or setting resource limits)

The second column represents the control keyword to manage the

success or failure processing:

 required If required fails, the entire operation fails after running

through all the other modules.

 requisite The operation fails immediately if requisite fails.

 sufficient If successful, this is enough to satisfy the requirements of

the service.

 optional Will cause an operation to fail if it is the only module in the

stack for that facility.

The third column displays the module that gets invoked, which can take

additional options and arguments. For example, pam_ldap.so provides

authentication, authorization, and password changing to LDAP servers. The

pam_nologin.so module prevents non-admin users from logging in to

a system if the /etc/nologin file exists. The default security context

permission is set with the pam_selinux.so module.

Using pam_tally2 to Manage Failed Authentications

To deny access after three failed login attempts, add the following two lines

to /etc/pam.d/sshd :

Images

The pam_tally2.so module is the login counter. The argument

deny=3 sets the login counter for failed attempts, and onerr=fail

will lock the account after three failures in this case.

To view the tally of failed logins, the root user can run the

/sbin/pam_tally2 command, as shown here:

Images

After the security issue has been investigated, the root user can reset

the account to allow logins, as follows:

Images

Using faillock to Manage Failed Authentications

The other utility used to view failed login attempts is faillock . The

faillock command has the additional feature of tracking password

attempts on screensavers. The following will display failed login attempts

using faillock for user malina :

Images

To reset the failed-login counter for the user, run the following:

Images

Authentication utilities such as ssh and login need to use the

pam_faillock.so module to implement the faillock capabilities.

Configuring User Limits

User limit settings allow for a better-tuned Linux system. For example,

administrators can limit how many times users may log in, how much CPU

time they can consume, how much memory they can use on a Linux system,

and more. There are two ways administrators can restrict access to

resources:

 Using ulimit to restrict access to resources

 Using pam_limits to restrict access to resources

Using ulimit to Restrict Access to Resources

Administrators use the ulimit command to configure limits on system

resources. However, limits configured with ulimit are applied only to

programs launched from the shell prompt. The syntax for using ulimit

is ulimit <options> <limit> . You can use the following options

with ulimit :

 -c Sets a limit on the maximum size of core files in blocks. If this option

is set to a value of 0 , core dumps for the user are disabled.

 -f Sets a limit on the maximum size (in blocks) of files created by the

shell.

 -n Sets a limit on the maximum number of open file descriptors.

 -t Sets a limit on the maximum amount of CPU time (in seconds) a

process may use.

 -u Sets a limit on the maximum number of processes available to a single

user.

Use the -a option with ulimit to view the current value for all

resource limits. This is shown in Figure 16-5.

Images

Figure 16-5 Viewing current resource limits with ulimit

Finally, use ulimit to set resource limits. For example, to set a limit

of 250 processes per user, enter ulimit -u 250 at the shell prompt.

The user could then own no more than 250 concurrent shell processes.

Using pam_limits to Restrict Access to Resources

Administrators can also limit user access to Linux system resources using a

PAM module called pam_limits , which is configured using the

/etc/security/limits.conf file. This file contains resource

limits defined using the following syntax:

Images

This syntax is described here:

 <domain> Describes the entity to which the limit applies. You can use

one of the following values:

 <user> Identifies a specific Linux user.

 @<group_name> Identifies a specific Linux group.

 * Specifies all users.

 <type> Defines a hard or soft limit. A hard limit cannot be exceeded,

whereas a soft limit can be temporarily exceeded.

 <item> Specifies the resource being limited via values shown in Table

16-1.

Images

Table 16-1 Configuring Resource Limits

 <value> Specifies a value for the limit.

For example, to configure the aria user with a soft CPU limit of 15

minutes, modify the /etc/security/limits.conf file in a text

editor and enter the following:

Images

This limit is useful for users running CPU-intensive programs that are

hogging cycles away from other users.

Likewise, limit the cheryl user to a maximum of two concurrent

logins by entering the following in the

/etc/security/limits.conf file:

Images

This would prevent any further logins to the system after two initial

logins were successful for the cheryl user.

Disabling User Login

From time to time, it may be important to disable all logins to your Linux

system (for example, if an administrator prefers a clean, total system data

backup). To do this, all current users must log out. The w command lists

all currently logged-in users and shows what they are doing. For example,

in Figure 16-6, two users are currently logged in: ksanders and

rtracy .

Images

Figure 16-6 Generating a list of logged-in users

Before you kick the users off the system, you may want to verify they

are not doing anything important. To list which processes are running on a

specific directory, use the lsof command, as shown here:

Images

After you politely ask the users to log off, you can brute-force log out

users, and reasonably protect their jobs, using the pkill -KILL -u

<username> command. For example, in Figure 16-7, the pkill

command is used to log off the ksanders user.

Images

Figure 16-7 Forcing a user to log off

Now, to disable all future logins, create a file in /etc named

nologin . As long as this file exists, no one but root is allowed to log

in. In addition, any text you enter in the /etc/nologin file will be

displayed if a user attempts to log in. In the example shown in Figure 16-8,

the text “The system is currently unavailable for login” is entered in the

/etc/nologin file. Thus, when a user tries to log in, this is the error

message displayed.

Images

Figure 16-8 “Login denied” message from /etc/nologin

Images

NOTE Administrators can enable a script to notify users of scheduled

shutdowns. Within the script, they can use the printf command to

send the message; for example:

printf "System Going down for service at 5PM

Today"

This behavior is configured in the /etc/pam.d/login file, shown

here:

Images

The line that reads auth requisite pam_nologin.so causes

PAM to check whether a file named nologin exists in /etc . If it does,

PAM does not allow regular users to log in.

After the full, clean backup is completed by the administrator, logins can

be re-enabled by deleting or renaming the nologin file. For example,

renaming it by entering the following at the shell prompt will still allow

users to log in:

Images

Let’s next discuss how to audit files to locate files with the SUID or

SGID permission set.

Images

EXAM TIP Administrators can modify the “Message of the Day” file, or

/etc/motd , so that maintenance messages appear on the end users’

terminal at every login.

Security Auditing Using find

In addition to disabling user logins, another issue related to user security

that you need to be familiar with is the need to audit files that have SUID

root permissions set. As you learned in Chapter 6, SUID stands for “set

user ID.” When an executable file with the SUID permission set is run, the

process is granted access to the system as the user who owns the executable

file, not as the user who actually ran the command. This is a serious issue if

the file is owned by root . When the root user owns a file with the

SUID permission set, it allows the process created by the file to perform

actions as root , which the user who started it is probably not allowed to

do. The same issue applies to files owned by the root group that have

“set group ID” (SGID) permission set.

Be aware that a small number of files owned by root on a Linux

system do need to have these permissions set. However, other files owned

by root/root that have the SUID/SGID permission set represent a

security vulnerability on the system. Many exploits are facilitated using

files with this permission set. A file that has the SUID permission set

appears as follows when listed with the ls command at the shell prompt:

Images

A file that has the SGID permission set appears as follows when listed

with the ls command at the shell prompt:

Images

Therefore, the administrator needs to consider running periodic audits to

identify any files owned by root that have either of these permissions set.

Any files beyond the minimal necessary files should be scrutinized

carefully to make sure they are not part of some type of exploit.

Administrators can search for files on Linux systems that have SUID

permissions set using the following command at the shell prompt as the

root user:

Images

Here is an example:

Images

The -perm option tells find to match files that have the specified

permission assigned to the mode; in this case, the s permission is assigned

to the file’s user (owner). You can also identify any files with the SGID

permission set using the following command:

Images

When you do, a list of all files with the SGID permission set is

displayed. Here is an example:

Images

Images

EXAM TIP Administrators can avoid disruptive server shutdowns by

disabling Ctrl-Alt-Del as follows:

[root]# systemctl mask ctrl-alt-del.target

[root]# systemctl daemon-reload

Practice controlling user access to a Linux system in Exercise 16-1.

Exercise 16-1: Managing User Access

In this exercise, you practice setting age limits on user passwords. Also, you

configure sudo to allow a standard user to kill processes on the system as

the root user. Perform this exercise using the virtual machine that comes

with this book.

Images

VIDEO Watch the Exercise 16-1 video for a demonstration on how to

perform this task.

Complete the following steps:

 Boot your Linux system and log in as your student1 user with a

password of student1 .

 Open a terminal session.

 Switch to your root user account by entering su - followed by a

password of password .

 Practice configuring age limits by completing the following steps:

Use the cat or less utility to view the /etc/passwd file. Identify a

user on the system who you want to configure password age limits for.

 Set the minimum password age to 3 days, the maximum password age to 60

days, and the number of warning days before expiration to 7 by entering

chage -m 3 -M 60 –W 7 <username> at the shell prompt.

 Configure sudo to allow a user on your system to kill processes as the

root user by doing the following:

Identify a user on your system to whom you want to grant the ability to kill

processes as root .

 As your root user, enter visudo at the shell prompt. You should see

the /etc/sudoers file loaded in the vi text editor.

Scroll down to the lines shown in the example that follows and comment

them out by inserting a # character at the beginning of each one.

Defaults targetpw # ask for the password of

target user i.e. root

ALL ALL=(ALL) ALL # WARNING! Only use with

'Defaults targetpw'!

 Add the following lines to the end of the sudoers file by pressing G and

then o:

Images

Press Esc and then enter :x to save the changes to the sudoers file.

Run top at the shell prompt as your root user.

Open a new terminal session and (as your standard user) enter ps -

elf | grep top . You should see a top process running that is

owned by the root user.

 Kill that process as your standard user by entering sudo killall top

at the shell prompt.

When prompted, enter your user’s password.

Enter ps -elf | grep top at the shell prompt again. You should see

that the top process that was owned by the root user has been killed.

Managing System Logs

Log files are a gold mine of information for the system administrator. Log

files are used to detect intruders into a system, troubleshoot problems, and

determine performance issues within the system. Linux usually uses an

audit trail system called auditd , but in this section, you will learn how to

manage and use system log files with more advanced tools. We will discuss

the following topics:

 Configuring log files

 Using log files to troubleshoot problems

 Using log files to detect intruders

Let’s begin by discussing how to configure log files.

Configuring Log Files

System log files are stored in the /var/log/ directory, shown in Figure

16-9.

Images

Figure 16-9 Contents of the /var/log/ directory

Notice in this figure that there are a number of subdirectories in

/var/log/ where system daemons, such as mysql , apparmor ,

audit , and cups , store their log files. Some of these log files are

simple text files that can be read with text manipulation utilities. Others are

binary files that require the use of a special utility, such as lastlog ,

which displays the most recent logins of users. As you can see in Figure 16-

9, there are quite a number of files within /var/log/ and its

subdirectories. As with most anything, some log files are much more useful

than others. Table 16-2 contains a list of some of the more important log

files.

Images

Table 16-2 Useful Log Files

Images

NOTE The files shown in Table 16-2 are log files used on a SUSE Linux

system. Other distributions may use different files by default. You can

customize logging using the /etc/rsyslog.conf file.

How logging is implemented on Linux depends on the Linux

distribution. For the CompTIA Linux+ exam, you need to be familiar with

the following system logging configuration implementations:

 rsyslogd message logging

 Disk space management using log file rotation

 journald message logging

rsyslogd Message Logging

Logging on a Linux system that uses init is usually handled by the

rsyslogd daemon. Instead of each daemon maintaining its own

individual log file, most of your Linux services are configured to write log

entries to /dev/log/ by default. This device file is maintained by the

rsyslogd daemon. When a service writes to this socket, the input is

captured by rsyslogd . The rsyslogd daemon then uses the entries

in the /etc/rsyslog.conf file, shown in Figure 16-10, to determine

where the information should go.

Images

Figure 16-10 The /etc/rsyslog.conf file

Images

NOTE Some Linux distributions use syslog-ng or syslogd

instead of rsyslogd to manage logging.

The syntax for the /etc/rsyslog.conf file is

Images

A <facility> refers to a subsystem that provides a message. Each

process on your Linux system that uses rsyslog for logging is assigned

to one of the following facilities:

 authpriv Facility used by services associated with system security and

authorization

 cron Facility that accepts log messages from cron and at

 daemon Facility that can be used by daemons that do not have their own

facility

 kern Facility used for all kernel log messages

 lpr Facility that handles messages from the printing system

 mail Facility for log messages from the mail MTA (for example,

postfix or sendmail)

 news Facility for log messages from the news daemon

 rsyslog Facility for internal messages from the rsyslog daemon

itself

 user Facility for user-related log messages (such as failed login

attempts)

 uucp Facility for log messages from the uucp daemon

 local0-7 Facilities used to capture log messages from user-created

applications

In addition to facilities, the rsyslogd daemon also provides priorities

to customize how logging occurs on the system. Prioritization is handled by

the klogd daemon on most distributions, which runs as a client of

rsyslogd . Use the following priorities with rsyslogd , listed from

most to fewest messages:

 debug All information; normally used for debugging activities.

 info Informational and unremarkable messages.

 notice Issues of concern, but not yet a problem.

 warn Noncritical errors that can potentially cause harm.

 err Serious errors fatal to the daemon but not the system.

 crit Critical errors, but no need to take immediate action.

 alert Action must be taken immediately, but the system is still usable.

 emerg Fatal errors to the computer; system unusable.

 none Do not log any activity.

For example, review the /etc/rsyslog.conf file shown in Figure

16-10 and go down about 15 lines, where you will see the following:

Images

Here, the rsyslogd daemon directs messages of all priority levels

(*) from the cron facility to the /var/log/cron file. If desired, an

administrator could customize the /etc/rsyslog.conf file to split

messages of different priority levels to different files, as shown here:

Images

The preceding definitions in /etc/rsyslog.conf will send all

user-related info-level messages (and higher priorities) to the

/var/log/messages file, and /var/log/secure will receive

only user alert messages and higher.

Disk Space Management Using Log File Rotation

Linux distributions also include a utility named logrotate , which is

run daily, by default, by the cron daemon. To customize how log files are

rotated, modify the /etc/logrotate.conf file, as shown in Figure

16-11.

Images

Figure 16-11 Configuring log file rotation in /etc/logrotate.conf

The /etc/logrotate.conf file contains default global parameters

used by logrotate to determine how and when log files are rotated.

However, these defaults can be overridden for specific daemons using the

configuration files located in the /etc/logrotate.d/ directory. For

example, in Figure 16-12, the /etc/logrotate.d/apache2 file is

used to customize logging for the apache2 daemon.

Images

Figure 16-12 Configuring Apache web server logging

Also, the first line shown in Figure 16-12 means the

/var/log/apache2/access_log file will be compressed. It can

have a maximum age of 365 days, after which it will be removed (maxage

365). Old versions of the file will be archived using a date extension

(dateext). The log file will go through 99 rotations before being

removed (rotate 99). If the file grows larger than 4096 KB, it will be

rotated (size=+4096k). The file will not be rotated if it is empty

(notifempty). No error message will be generated if the file is missing

(missingok). The file will be created with 644 permissions, will have

the root user as the owner, and will be owned by the root group

(create 644 root root). After a log file is rotated, the

/etc/init.d/apache2 reload command will be run

(postrotate /etc/init.d/apache2 reload).

Images

EXAM TIP You can test your logging configuration using the logger

utility. This command-line tool allows you to manually make entries in your

logging system. The syntax is as follows:

Images

journald Message Logging

Linux distributions that use the systemd daemon use the journald

daemon for logging instead of rsyslogd . The journald daemon

maintains a system log called the journal, located in

/run/log/journal/ . To view the journal, use the journalctl

command. When you enter this command at the shell prompt with no

parameters, the entire journal is displayed, as shown in Figure 16-13.

Images

Figure 16-13 Viewing the journal with journalctl

Images

NOTE By default, journal log data is lost at reboot. To make it persistent,

do the following:

Images

One of the neat features of the journald daemon is the fact that you

can use it to view system boot messages as well. To do this, enter

journalctl -b at the shell prompt. The messages from the most

recent system boot are displayed. In addition, you can use journalctl

to view messages from previous system boots. This can be done in two

different ways:

 Specifying the -b flag with the command followed by a positive number

will look up messages from the specified system boot, starting from the

beginning of the journal. For example, entering journalctl -b 1 will

display messages created during the first boot found at the beginning of the

journal.

 Specifying the -b flag with the command followed by a negative number

will look up the messages from the specified system boot starting from the

end of the journal. For example, entering journalctl -b -2 will

display system messages created two boots ago.

The journalctl command can also be used to display only log

entries related to a specific service running on the system. The syntax is

journalctl -u <service_name> . For example, to view all

journal entries related to the SSH daemon running on the system, enter

journalctl -u sshd at the shell prompt. An example is shown in

Figure 16-14.

Images

Figure 16-14 Viewing sshd journal events

The behavior of the journald daemon is configured using the

/etc/systemd/journald.conf file. This file has many

configurable parameters. Here are some of the more useful ones:

 ForwardToSyslog Configures journald to forward its log

messages to the traditional rsyslog daemon.

 MaxLevelStore Controls the maximum log level of messages stored

in the journal file. All messages equal to or less than the log level specified

are stored, whereas any messages above the specified level are dropped.

This parameter can be set to one of the following values:

 none

 emerg (0)

 alert (1)

 crit (2)

 err (3)

 warning (4)

 notice (5)

 info (6)

 debug (7)

With this background in mind, let’s next discuss how to view and use

your log files.

Using Log Files to Troubleshoot Problems

As mentioned earlier in this chapter, log files can be an invaluable resource

when troubleshooting Linux problems. If the kernel or a service encounters

a problem, it will be logged in a log file. Reviewing these log files can

provide a wealth of information that may not necessarily be displayed on

the screen.

Some log files are binary files that must be read with a special utility; for

example, the files in the /run/log/journal/ directory are binary

files read by journalctl . However, most log files are simple text files

that are viewed with standard text manipulation utilities. Utilities like

cat , less , more , and so on can be used to view text-based log files.

However, there is a problem with these utilities: log files are huge!

For example, the /var/log/messages file, which logs generic

system activity, may have 10,000 or more lines in it. That’s a lot of text!

The less utility displays only 24 lines at a time. You would have to press

the spacebar a lot of times to get to the end of the file!

There are two strategies that can help. The first is to redirect the output

of the cat command to the grep command to filter a specific term

within a log file. For example, if you want to locate information within

/var/log/messages related to logins, you would enter the following

at the shell prompt:

Images

Then, only entries containing the term “login” would be displayed from the

/var/log/messages file. If the system uses systemd and a

journal, the same could be done with the journalctl command:

Images

In addition to grep , you can also use the head and tail utilities

to view log file entries. Understand that most log files record entries

chronologically, usually oldest to newest. To view the beginning of a log

file, enter head <filename> at the shell prompt to display the first

lines of the file. For example, in Figure 16-15, the beginning of the

/var/log/messages file has been displayed with head .

Images

Figure 16-15 Using head to view a log file

The tail utility works in a manner opposite of head . Instead of

displaying the first 10 lines of a file, it displays the last 10 lines. This is

very useful because, when troubleshooting, you only need to see only the

last few lines of a log file. To do this, enter tail <filename> at the

shell prompt. In Figure 16-16, the /var/log/messages file is being

viewed using tail .

Images

Figure 16-16 Using tail to view a log file

The tail utility provides the -f option, which is used often when

troubleshooting. The -f option with tail will display the last lines of a

log file as normal, but it monitors the file being displayed and displays new

lines as they are added to the log file. For example, you could run the

tail -f /var/log/messages command to monitor the system log

file for error messages during the troubleshooting process. You can quit

monitoring the file by pressing Ctrl-c .

The “follow” feature is also available with systems that use the

journald daemon to manage logging. Run journalctl -f at the

shell prompt, and the last few entries in the journal are displayed. The

journalctl command then monitors the journal and prints new entries

as they are added. Again, you can quit monitoring by pressing Ctrl-c .

You can check the system log files listed previously in Table 16-2 to

troubleshoot problems, or other log files, including the following:

 cron Contains entries from the cron daemon

 dmesg Contains hardware detection information

 maillog Contains entries generated by the sendmail daemon

 secure Contains information about access to network daemons

 rpmpkgs Contains a list of installed rpm packages

 dpkg.log Contains a list of deb packages installed, upgraded, and

removed

To troubleshoot problems associated with an application or service,

check for a log file maintained specifically for that service. For example,

check the mail , mail.err , mail.info , mail.warn , or

maillog file to troubleshoot problems with the postfix or

sendmail daemon. If there is trouble with the mysqld daemon, check

the mysqld.log file within the /var/log/mysql directory. To

troubleshoot problems with the Apache web server, investigate the various

log files within the /var/log/apache2 directory.

In addition to using log files to troubleshoot problems on the Linux

system, use them to detect unauthorized intrusion attempts.

Using Log Files to Detect Intruders

Detecting intruders involves looking for clues they left behind in the

system. One of the best resources in this regard is the log files in the Linux

system. Much like a CSI detective, practice and experience are best to

develop an intuitive sense that informs you when something looks

suspicious. The best way to develop this intuition is to spend a lot of time

reviewing log files, because then you’ll have a baseline of “normal” for

your system. Once you know what is normal, you can spot what is not

normal.

An important log file to review to identify suspicious activities is the

/var/log/wtmp file. This log file contains a list of all users who have

authenticated to the system. The file is saved in binary format, so you

cannot use cat , less , or a text editor such as vi to view it. Instead,

you must use the last command at the shell prompt. Output from the

last utility is shown in Figure 16-17.

Images

Figure 16-17 Using last to review login history

The last utility displays the user account, login time, logout time, and

where users authenticated from. When reviewing this file, look for activity

that appears unusual—for example, logins that occurred in the middle of the

night when no one is at work should be considered suspicious.

Also view the /var/log/faillog file, which contains a list of

failed authentication attempts. This file is very effective at detecting

dictionary attacks, which run through a list of dictionary terms, testing them

as passwords for user accounts. Like wtmp , faillog is a binary file.

To view it, use the faillog utility. This utility displays the user who

tried to authenticate, how many times that user failed to log in, and when

the last unsuccessful attempt occurred. Also, try the -u option to view

login attempts for a specific user account—for example, faillog -u

malina .

Images

EXAM TIP he lastb command also lists bad login attempts by reading

the log file /var/log/btmp , which contains all the bad login attempts.

The next log file to analyze is /var/log/lastlog , which contains

a list of all the users in the system and when they last logged in. As with the

other log files we have reviewed, you cannot view lastlog with less ,

cat , or a text editor. To view lastlog , use the lastlog utility from

the shell prompt, as shown in Figure 16-18.

Images

Figure 16-18 Using lastlog to view last login times

The last type of log file can help you detect intrusion attempts. These are

/var/log/messages and /var/log/journal (if your

distribution uses them). As mentioned earlier, these log files contain

messages from all services running on the system. As such, they contain

plenty of data that may or may not be related to intrusion attempts. You can

use grep to isolate relevant entries. For example, grep login

/var/log/messages | more displays login-related entries in the

files. The same can be done with the journalctl command.

In addition to viewing log files, you can use another command-line tool

similar to w to see who is currently using the system, as discussed in

Chapter 4. Use who to see who is currently logged into your system.

Enhancing Group and File Security

Security is considered a three-legged stool consisting of confidentiality,

integrity, and availability. Linux systems are implemented with a priority of

availability over confidentiality and integrity. This is called Discretionary

Access Control (DAC). DAC systems allow users to set confidentiality

rules at their own discretion. This is fine for most corporate environments

where providing data as quickly as possible is important (for example,

getting sales quotes out to prospects).

Military environments demand confidentiality be the priority. These

environments utilize a system known as Mandatory Access Control (MAC).

Figure 16-19 shows how MAC works. If a user has Confidential access,

they are allowed to access documents in Unclassified, and Confidential;

however, they are not allowed to access documents in Secret or Top Secret

because their clearance is too low.

Images

Figure 16-19 The Mandatory Access Control model

To enable MAC on Linux systems, install a Linux Security Module.

There are several, but the Linux+ exam focuses on the following:

 Implementing SELinux

 Implementing AppArmor

Implementing SELinux

The U.S. National Security Agency (NSA) developed SELinux to provide

security mechanisms above user/group/other and read/write/execute, which

provide only DAC. The SELinux design restricts operations to the least

privilege possible; actions not explicitly allowed are denied by default. Red

Hat 7 and above, CentOS 7 and above, and derivatives come with SELinux

incorporated into the kernel.

SELinux Contexts Permissions

SELinux is based on a subject (that is, a user or application) that needs to

access an object (that is, a file, socket, or some other application). A

reference monitor, also simply known as monitor, determines whether the

subject has rights to the object depending on the context, or label defined

onto the object, as shown in Figure 16-20. To view the context permissions

of files, run the command ls -Z .

Images

Figure 16-20 SELinux Reference Monitor System

Images

The “dot” that appears at the end of the permissions (-rw-r--r--.)

means that SELinux is enabled and the files have been defined a context. To

view the context permissions of commands, run ps -Z :

Images

The contexts are defined as _u for user, _r for role, and _t for type,

and s0 represents the sensitivity level. Rules of targeted policies are

associated with _t contexts. Rules associated with multi-level security

(MLS) levels are associated with the s0 contexts. See Table 16-3 for a list

of SELinux user context permission abilities.

Images

Table 16-3 SELinux User Context Permission Abilities

Images

NOTE SELinux also introduced selinux-policy-minimum , which

allows users to interact with their Linux system in an unconfined state.

File contexts can be modified using the chcon command. To

recursively change files in subdirectories, use the -R flag:

Images

To return the filesystem to the default settings, either relabel the entire

filesystem by running touch /.autorelabel and rebooting or use

the restorecon command to change individual files and directories:

Images

Default contexts are defined in

/etc/selinux/targeted/contexts/files/file_contexts

. To modify the SELinux contexts, use the semanage command.

Images

EXAM TIP It is good to know the following semanage options: -s

specifies the user, and -a adds the constraining context permission to that

user. These options provide more security because they force users to

comply with SELinux policies:

Images

Enabling SELinux

SELinux can be implemented in three modes:

 Enforcing

 Permissive

 Disabled

Enforcing mode denies access to users based on the defined SELinux

policies. Permissive access simply logs actions that would have been denied

under enforcing mode; this is an excellent mode to use while tuning

security policies. Disabled mode simply deactivates SELinux.

To see the current mode, use the getenforce command, and to set

the SELinux mode, use setenforce :

Images

SELinux enforcement modes are defined in either

/etc/sysconfig/selinux (on Red Hat, SUSE, and derivatives) or

/etc/selinux/config (on Debian, Ubuntu, and derivatives).

SELinux’s default policy is called “targeted,” which allows

administrators to define contexts in a fine-grained manner to targeted

processes. This allows, for example, enforcing memory restrictions for all

processes to minimize the vulnerability of buffer overflow attacks. For

example, network services are targeted, but systemd , init , and user

processes are not. The other policy mode is MLS, which uses the Bell-

LaPadula model preferred at the U.S. Department of Defense.

Images

NOTE To experience MLS, install the selinux-policy-mls

package. MLS supports security levels from c0 to c1023 , where c0 is

the minimal level and c3 is Top Secret; the other levels are yet to be

defined.

Images

The sestatus command provides detailed output of the SELinux

settings:

Images

The setenforce command allows SELinux modes to be set with

booleans as well, where 0 equals permissive and 1 equals enforcing. To

make the change permanent, change the SELINUX variable inside the

/etc/selinux/config file.

Images

NOTE If sestatus output shows SELinux status is set to

disabled , the SELinux state converts from policy to non-policy and the

setenforce command will not work. You will need to change the

SELINUX variable to enforcing in the /etc/selinux/config

file and then reboot. After reboot, all files will be relabeled with SELinux

contexts.

Using SELinux Booleans

To modify SELinux policies without reloading or rebooting, apply policy

booleans. Currently there are about 300 boolean possibilities, and the list is

growing. To list the available booleans, use semanage :

Images

From this listing, cron cannot relabel filesystems for restoring file

contexts. Another way to display booleans is with getsebool :

Images

However, getsebool does not display descriptions like

semanage . Also, getsebool -a will display all booleans.

To configure booleans, use the setsebool command:

Images

This setting is lost when the system reboots. Run setsebool -P to

make the setting permanent across reboots.

A few commonly used booleans are shown in Table 16-4. Booleans are

stored in the /sys/fs/selinux directory and can be listed with the

following command:

Images

Table 16-4 Common SELinux Boolean Options

Images

Auditing SELinux

Finally, SELinux auditing must be discussed for proper SELinux

administration. First, install the setroubleshoot-server package to

track SELinux notifications. Messages will be stored in

/var/log/audit/audit.log .

The /var/log/audit/audit.log file can be read using

sealert :

Images

For details on why an SELinux operation fails, run audit2why , as

shown here:

Images

The preceding output from audit2why details a problem with the

useradd command due to an improper type setting. The

audit2allow utility scans audit.log for a denied useradd

operation and generates policies that help the operation succeed, as shown

here:

Images

Finally, you can configure SELinux policy with the semanage

command. Run the following to modify the context on the useradd

command:

Images

The fcontext subcommand adds the file context for the useradd

command, and the -a and -t options add the type usr_t to the file

context. The -C and -l options provide a local listing of file context

customizations.

Implementing AppArmor

Like SELinux, AppArmor provides Mandatory Access Control (MAC)

features to filesystem access. It also includes a “learning” mode that allows

the system to observe application behaviors and set profiles so that

applications run safely. The profiles limit how applications interconnect

with processes and files based on the application permissions.

Profiles are provided with Linux, but they also are supplied with

applications or custom-built and tuned by administrators. These profiles are

located in the /etc/apparmor.d/ directory and are simply text files

that contain rules and capabilities. Profiles can be tuned using tunables,

which reside in /etc/apparmor.d/tunables/ and are simply

global variable definitions that allow profiles to become portable to

different environments.

Profiles can be run in either enforce mode or complain mode. Enforce

mode runs at the minimum permission allowed them. Complain mode is

similar to SELinux permissive mode, which simply logs events. This is a

great way to test AppArmor before converting to enforce mode.

The status of AppArmor is displayed using apparmor_status :

Images

If there is a profile in enforce mode and you want to switch the profile to

complain mode, use the aa-complain command:

Images

This places all profiles inside the /etc/apparmor.d directory into

complain mode. To revert all profiles to enforce mode, use aa-enforce :

Images

To disable a profile, use aa-disable . For example, to disable the

CUPS printing profile, run the following:

Images

Network security is a huge issue, with malicious actors attacking

systems from all over the world to access a victim’s computer or network.

To view the PIDs and network processes not protected by AppArmor, run

the command aa-unconfined and then determine whether unconfined

processes need to be protected with AppArmor:

Images

Exercise 16-2: Managing SELinux Contexts

In this exercise, you practice using SELinux contexts using the CentOS

image. Install the Apache web server and configure the security using

chcon . Perform this exercise using the virtual machine that comes with

this book.

Images

VIDEO Watch the Exercise 16-2 video for a demonstration on how to

perform this task.

Complete the following steps:

 Boot your Linux system and log in as your student1 user with a

password of student1 .

 Open a terminal session.

 Switch to your root user account by entering su - followed by a

password of password.

 Verify SELinux is running in enforcing mode by using getenforce or

sestatus .

 If getenforce responds with disabled , run nano

/etc/selinux/config and modify the variable SELINUX from

disabled to enforcing . Save and exit from nano . Reboot. Return

to step 1.

 If SELinux is running in enforcing mode, proceed to step 5.

 Install the Apache web server by running yum -y install httpd .

Start the web server by running systemctl start httpd .

 Install the text-based web browser called Lynx by running yum -y

install lynx .

 Test your new webserver:

Images

View the new web page.

 Exit the browser by pressing q to quit and y to confirm.

 Create another web page and attempt to view it:

Images

The web page will show as “Forbidden” due to improper context settings

because it retains the settings of the directory it was moved from.

 Review the security SELinux context settings:

Images

 Notice the type field for page2.html is not set to

httpd_sys_content_t , so the web page is not allowed for viewing.

Correct that here using chcon :

Images

View the new web page.

 Exit the browser by pressing q to quit and y to confirm.

Chapter Review

In this chapter, we introduced several security issues affecting Linux

systems. It is important to physically secure the Linux system and take

measures to secure the operating system itself.

Control user access to increase the security of your systems. The root

user should be used only to complete root tasks. All other tasks should

be completed using a standard user account. If users occasionally need to

run commands as root , provide them access to sudo . Implement strong

password policies, and lock accounts after failed authentications.

Administrators can impose limits on how many times users may log in, how

much CPU time they can consume, and how much memory they can use on

a Linux system.

Administrators can configure system log files to troubleshoot Linux

system issues and detect intruders. The chapter concluded with how to

enable Mandatory Access Control by installing a Linux Security Module.

Make sure you understand the following points about increasing the

security of Linux systems:

 Servers need the highest degree of physical security and should be locked in

a server room. Access to the server room should be strictly controlled.

 Users should lock their workstations or log out completely before leaving

their systems. To facilitate this, users can use the nohup command to run

programs. This allows processes to continue running even if the user logs

out.

 The root user should be used only to complete root tasks. All other

tasks should be completed using a standard user account.

 Use the su command to switch to the root user account when you need

to complete tasks that require root-level access and the exit command to

switch back when done.

 If users occasionally need to run commands as root , provide them access

to sudo . Use the /etc/sudoers file to specify which users can run as

root with the visudo utility.

 If users need to run commands as another user, provide them access to

pkexec .

 Configure password aging with the chage command.

 Administrators can impose limits on how many times users may log in, how

much CPU time they can consume, and how much memory they can use on

a Linux system. One way to do this is to use the pam_limits module

with the Pluggable Authentication Modules (PAM) system.

 Limits are configured in the /etc/security/limits.conf file.

 Administrators can also use the ulimit command to configure limits on

system resources that are applied to programs launched from the shell

prompt. The syntax for using ulimit is ulimit <options>

<limit> .

 To temporarily disable user logins, first use the w or lsof command to

view a list of all currently logged-in users. Warn them that the system is

going down for service. After a few minutes, use the pkill -KILL -u

<username> command to brute-force log out each non-cooperative user.

Future logins are disabled by creating the /etc/nologin file. As long

as this file exists, no one but root is allowed to log in.

 Use the find command to audit files that have SUID or SGID root

permissions set because this is a potential security risk that allows a

malicious actor access without knowing the root password.

 Search for files on a Linux system that have SUID permissions set using the

find / -type f -perm -u=s -ls command at the shell prompt

as the root user.

 Identify files with the SGID permission set using find / -type f -

perm -g=s -ls .

 In addition to baselines, use system log files to troubleshoot Linux system

issues. System log files are stored in /var/log . Some of the more

important log files include kern.log , messages , and secure .

 Logging is managed by the rsyslogd daemon and can be customized

using the /etc/rsyslog.conf file.

 On older distributions, logging is handled by the syslogd daemon,

which can be customized using the /etc/syslog.conf file.

 Most Linux distributions are configured to automatically rotate log files

periodically, preventing them from growing too large. The cron daemon

periodically runs the logrotate utility to do this.

 How logrotate specifies log files is configured using the

/etc/logrotate.conf file and the configuration files for individual

services located in /etc/logrotate.d/ .

 For systemd systems, the journald daemon manages logging. The

journald daemon maintains a system log called the journal (located in

/var/log/journal/).

 To view the journal, use the journalctl command. The behavior of the

journald daemon is configured using the

/etc/systemd/journald.conf file.

 Use the -f option with tail or journalctl to monitor a log file for

new entries.

 Periodically review the following log files, looking for anomalies that

indicate intrusion attempts:

 /var/log/wtmp

 /var/log/faillog

 /var/log/lastlog

 /var/log/messages

 SELinux and AppArmor implement Mandatory Access Control on Linux

systems.

 Use the ls -Z command to observe SELinux file context permission

settings.

 Use the ps -Z command to view the SELinux process context of

currently running processes.

 Use the chcon command to change SELinux contexts on files. The

restorecon command is used to return files to their default SELinux

contexts.

 To view the current SELinux mode, use either the sestatus or

getenforce command.

 The setenforce command can enable enforcing, permissive, or

disabled SELinux mode, with a default policy of targeted. To make the

mode permanent, modify the SELINUX variable in the

/etc/selinux/config file.

 SELinux policies settings are provided through booleans. To get the value

of a boolean, use the getsebool command. To configure booleans, use

the setsebool command.

 The audit2why command describes why access was denied to a

command.

 The audit2allow command generates suggestions on how to override

denied operations.

 The semanage command can apply suggestions from audit2allow

to Linux commands.

 AppArmor uses a set of predefined profiles located in the

/etc/apparmor.d and /etc/apparmor.d/tunables

directories. Profile settings include the warn-only complain mode and the

deny-unless-permitted enforce mode. To enable complain mode, use the

aa-complain command. To enable enforcement mode, use the aa-

enforce command. To disable AppArmor, run aa-disable .

 To view network applications unprotected by AppArmor, run the aa-

unconfined command. This will list the unconfirmed processes and

their process IDs.

Questions

 Which of the following would be the most secure place to locate a Linux

server?

 On the receptionist’s front desk

In the CIO’s office

 In an unoccupied cubicle

 In a locked room

 Which of the following can be used to secure users’ workstations? (Choose

two.)

 Screensaver password

Session lock

 Long screensaver timeout period

 Passwords written on sticky notes and hidden in a drawer

Easy-to-remember passwords

 Which of the following commands will load the updatedb process and

leave it running even if the user logs out of the shell?

 updatedb

updatedb &

 updatedb -nohup

 nohup updatedb &

 Which of the following commands can be used to switch to the root user

account and load root ’s environment variables?

 su -

su root

 su root -e

 su -env

 Which of the following is a strong password?

 Bob3

TuxP3nguin

 penguin

 Castle

 You need to set password age limits for the ksanders user account.

You want the minimum password age to be 1 day, the maximum password

age to be 45 days, and the user to be warned 5 days prior to password

expiration. Which command will do this?

 usermod –m 1 –M 45 –W 5 ksanders

useradd –m 1 –M 45 –W 5 ksanders

 chage –M 1 –m 45 –W 5 ksanders

 chage –m 1 –M 45 –W 5 ksanders

 Which log file contains a list of all users who have authenticated to the

Linux system, when they logged in, when they logged out, and where they

logged in from?

 /var/log/faillog

/var/log/last

 /var/log/wtmp

 /var/log/login

 Which log file contains a list of failed login attempts?

 /var/log/faillog

/var/log/last

 /var/log/wtmp

 /var/log/login

 Which log file contains messages from all services running on the system?

 /var/log/faillog

/var/log/messages

 /var/log/wtmp

 /var/log/services

 Which utility can you use to view your /var/log/lastlog file?

 cat

last

 grep

 lastlog

 You need to view the first few lines of the really long

/var/log/boot.msg file. Which of the following commands are best

for doing this? (Choose two.)

 head /var/log/boot.msg

tail /var/log/boot.msg

 grep -l 10 /var/log/boot.msg

 less /var/log/boot.msg

cat /var/log/boot.msg

 Which tool is the best to use to configure SELinux policy onto a Linux

command?

 audit2why

semanage

 audit2allow

 sealert

 Which option, when used with the tail or journalctl command,

will cause the tail or journalctl utility to monitor a log file for

new entries?

 -

-l

 -m

 -f

 Which of the following commands can be used to change the SELinux

context of a file?

 chcon

conch

 contextchange

 context-change

 You need to scan your Linux filesystem to locate all files that have either

the SUID or SGID permission set. Which commands can you use to do

this? (Choose two.)

 find / -type f -perm -u=s -ls

find / -type f -perm -g=s -ls

 audit -p=SUID

 audit -p=SGID

find / -p=s

find / -p=g

 The existence of which file prevents all users except root from logging

in to a Linux system?

 /root/nologin

/etc/nologin

 /var/log/nologin

 /tmp/nologin

 You want to configure limits on the system resources your Linux users are

allowed to consume using the pam_limits PAM module. Which file do

you need to edit to set these limits?

 /etc/limits.conf

/etc/pam_limits.conf

 /etc/security/limits.conf

 /etc/security/pam_limits.conf

Answers

 D. A locked room would be the most secure place to locate a Linux server.

 A, B. Screensaver passwords and the session lock function offered by KDE

and GNOME can be used to secure users’ workstations.

 D. The nohup updatedb & command will load the updatedb

process and leave it running, even if the user logs out of the shell.

 A. The su - command switches to the root user account and loads

root ’s environment variables.

 B. The TuxP3nguin password meets the basic requirements for a strong

password.

 D. The chage -m 1 -M 45 -W 5 ksanders command will set the

minimum password age to be 1 day, the maximum password age to be 45

days, and the user to be warned 5 days prior to password expiration.

 C. The /var/log/wtmp log file contains a list of all users who have

authenticated to the Linux system, when they logged in, when they logged

out, and where they logged in from.

 A. The /var/log/faillog log file contains a list of failed login

attempts.

 B. The /var/log/messages log file contains messages from all

services running on the system.

 D. The lastlog command can be used to view your

/var/log/lastlog file.

 A, D. The head /var/log/boot.msg and less

/var/log/boot.msg commands will display the first few lines of a

really long file onscreen.

 B. The semanage command is best for configuring SELinux settings

onto a command. The commands sealert , audit2why , and

audit2allow help to troubleshoot SELinux disruptions.

 D. The -f option, when used with journalctl or tail , will cause

the command to monitor a file for changes and display them on the screen.

 A. The chcon command is used to change the SELinux context of a file.

 A, B. The find / -type f -perm -u=s -ls command locates

all files that have the SUID permission set. The find / -type f -

perm -g=s -ls command locates all files that have the SGID

permission set.

 B. The existence of the /etc/nologin file prevents all users except

root from logging in to the Linux system.

 C. User limits enforced by the pam_limits module are configured in

the /etc/security/limits.conf file.

CHAPTER 17
Applying DevOps: Automation and Orchestration

In this chapter, you will learn about

 Orchestration concepts

 Orchestration processes

 The Git revision control system

Learn to do common things uncommonly well.

—George Washington Carver, Tuskegee Institute

You have learned a great deal about Linux automation tools, such as using

at , batch , crontab , and others. Automation is a magnitude more

difficult, however, when Linux administrators manage thousands of

computers for an organization. Orchestration tools such as Kubernetes,

Ansible, Puppet, and Chef, among others, make it simpler to manage

networked systems.

Let’s begin this chapter by discussing how Linux handles processes.

Orchestration Concepts

The keys to launching an orchestration system capable of installing Linux

onto hundreds of computers with a single keystroke are the tools behind the

system. The foundation of orchestration includes Development teams that

create new applications and tools, working together with Operations and

Production teams that provide solutions for end users. Together this is

called DevOps.

Without DevOps, Development teams work apart from Production

teams, so what might be an ideal design for Development may not appeal to

Operations. For example, consider a case of developers being tasked to

design and implement a green line. Imagine developers deliver their

solution, but the Operations team admits that although the solution meets

the agreed-upon design, the green line is not as wide or long as expected.

With DevOps, Development and Operations teams work together during

implementation and testing. The length and width of the green line is

discussed and resolved well before the product is released, resulting in a

product that better meets end-user expectations. DevOps delivers

continuous integration and continuous deployment (CI/CD) resulting in

quicker and consistent results.

CI/CD is part of the software development lifecycle (SDLC). The SDLC

is composed of several stages, as follows:

 Planning

 Designing

 Developing

 Testing

 Maintenance

Continuous integration ties development and testing closely together

with the goal of fewer bugs entering the testing phase.

Continuous delivery ties testing and maintenance together so that the

application fits well in the production environment and interoperates with

other applications, networks, and databases. Continuous deployment

assures that application changes don’t negatively affect the production

environment.

The widely used products for DevOps collaboration are described in

Table 17-1.

Table 17-1 DevOps Collaboration Solutions

Orchestration automates several tasks (in fact, the entire DevOps

process). An example might be an online computer game design company

that works with publishing content continuously. The company’s

deployment might include installing and configuring a gaming web server,

designing and testing a computer application server, and developing and

operating a virtual world engine. An orchestration system manages each

step of the process. Orchestration even handles issues involved with

intermingling operating systems and gaming architectures. Deployment

systems can be cloud-based or local.

EXAM TIP Kubernetes works with Docker, discussed in Chapter 18, to

consistently deploy containerized operating systems in an organization

Automation is a single task, and it builds infrastructures automatically. A

series of these automated tasks is defined as orchestration, combining

varied tasks such as installation, configuration, and patch updates. An

example of orchestration is having the game designer automate application

installations onto gaming servers, while the configuration task automates

deployment to users. These combined tasks and others required to deploy

an application for thousands of worldwide users via servers and virtual

machines can be simplified with orchestration.

Build automation tools focus on deploying operating system installations

to many computer machines. For example, SUSE Linux Enterprise Server

performs build automation using its AutoYaST service, which performs

multiple unattended mass deployments of SUSE across a network.

AutoYaST contains installation and configuration data for consistent

installations.

Automated configuration management ensures uniform, orderly, and

stable systems and maximizes productivity. Automated configuration

management also consistently measures security and service level

agreements (SLAs) over manual configurations and installations. This leads

to significant improvement of change and configuration management

systems.

Orchestration Processes

Orchestration processes include tools that are either agent-based or

agentless. The difference between these two types of tools is whether the

application resides on the orchestration device (that is, agent) or does not

(that is, agentless).

Orchestration steps involve designing a specific system configuration

and developing and testing the solution based on the specifications. The

system administrators design the configuration(s) and create the definition

files that build the systems. Finally, the systems are built and configured

based on the definitions.

The widely used products for DevOps processes are described in Table

17-2.

Table 17-2 DevOps Process Solutions

NOTE Network orchestration occurs with YAML files contained in

/etc/netplan/ . For example, 01-netcfg.yaml can contain rules

to set up dynamic networks.

The phrase infrastructure as code (IaC) describes orchestration methods

and tools that control configurations and deployments using mostly scripts,

code, and libraries. Infrastructure as code means that one configuration

design can deploy needed infrastructures and other desired programs and

services.

IaC tools read scripts written in Yet Another Markup Language (YAML),

eXtensible Markup Language (XML), or JavaScript Object Notation

(JSON). These serialization languages use suffixes that end in their name,

such as file.yaml , file.xml , or file.json . The Terraform

provisioning solution processes JSON files to build a virtual computer

instance, as this code snippet shows:

The Ansible provisioning solution processes YAML files to build a

virtual computer instance, as this code snippet shows:

Some provisioning solutions convert to and from XML because JSON

does not allow commenting An XML code snippet follows:

Orchestration tasks are defined by attributes, which are set by system

administrators to determine which applications should be installed based on

hard drive size and operating system, for example. Canonical, which

provides Ubuntu Linux, created Juju, an open source modeling tool to

facilitate fast deployment and configuration of applications. Juju uses

attributes to support its “metal as a service” function, which installs

applications based on disk space or available memory.

Orchestration tools are used to manage the inventory of virtual

machines, networks, applications, hardware, hypervisors, operating

systems, software licenses, and more. Inventory management is handled

with various tools, such as SUSE Manager, which manages inventories,

checks compliance, and monitors containers running in Kubernetes for

vulnerabilities.

The widely used products for DevOps inventories are described in Table

17-3.

Table 17-3 DevOps Inventory Solutions

EXAM TIP Recognize the structures of JSON, XML, and YAML files.

The Git Revision Control System

Git is a robust revision control system designed to handle software

programming changes and provide centralized storage for development

teams. Software developers automate code management, enhance

collaboration, and implement version control with this powerful system.

Git was created by the same individual who kicked off the Linux Project,

Linus Torvalds, and it introduced features such as decentralization so that

several revisions are allowed on several machines across the Internet. Git

superseded such tools as RCS (Revision Control System) and CVS

(Concurrent Versions System), which were popular development tools for

UNIX but lacked the security requirements of today.

Version control is managed using the Git repository. One example of a

centralized repository is the GitHub project at https://www.github.com,

which manages millions of open source projects worldwide. But using

GitHub is not a requirement; a development team can set up its own Git

repository managed from a local computer or on a shared remote system

across the Internet.

For the CompTIA Linux+ exam, you must be familiar with the following

concepts:

 Using Git

https://www.github.com/

 Collaborating with Git

Using Git

Git is the “stupid content tracker” according to the Git man page, which

later clarifies it as a “fast, scalable, distributed revision control system.”

Git’s command set is divided into the high-level “porcelain” commands,

which are the main revision control commands, and the low-level

“plumbing” commands, which are designed for scripting. Some of the

often-used porcelain Git commands are listed in Table 17-4.

Table 17-4 Git Porcelain Commands and Descriptions

For administrators who prefer them, there are equivalent “ git dash”

commands located under /usr/libexec/git-core/ , such as git-

config , git-init , and so on.

EXAM TIP The CompTIA Linux+ exam Git requirements focus on the

higher-level porcelain commands listed in Table 17-4.

After installing Git using yum , zypper , or apt-get , depending

on the professional version of Linux being used, administrators can quickly

create a local project, as follows:

Initializing the new gitting project creates a .git/ directory within the

project, which contains the version control files required for the project. In

this case, the directory is stored under

/home/heinrich/gitting/.git/ . Listing the .git/ directory

displays the following files:

As the project is developed and modified over the coming days, a

.gitignore file can be created that lists files to be ignored during any

commit actions. This file is edited and maintained by the project developers

and resides at the root of the repository (for example,

~/gitting/.gitignore). To continue the example, a

project.txt file is added to the project:

At the moment the project is staged but not yet committed, as can be

seen from the result of the status message.

Use git-config to define the individual in charge of this repository.

Using the --global option defines the user for current and future

repositories, as shown next:

After modifying the project, you can view differences with git-

diff , as shown here:

Again, the changes are only staged at this point. To finalize the changes,

they must be committed with git-commit . Use the -m option to

immediately apply a commit “message”; otherwise, an editor will open to

apply the commit message:

To view the results of the recent interactions, run git-log . A 40-digit

commit ID will list which git is used to track the project, as shown here:

Collaborating with Git

A developer can download, or pull, a new project from a remote repository

such as https://github.com, https://gitlab.com, https://bitbucket.org,

https://sourceforge.net, https://opendev.org, or https://launchpad.net, and

conduct further development at the developer’s local repository, as shown

in Figure 17-1. Once the developer has completed changes for this phase,

they can push the changes back to the remote repository.

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://sourceforge.net/
https://opendev.org/
https://launchpad.net/

Figure 17-1 Git process flow example

To demonstrate how this works, suppose a fictional company named

Trex, Inc., decides to create a new software package that assists writers

creating new science fiction works. The Trex project is called tribblers, an

open source program hosted at https://sourceforge.net. Programming

partners improve tribblers by writing code to enhance the project. Partners

download the latest version of the tribblers source code by cloning the

project onto their systems as follows:

Now that the tribblers project has been cloned from the remote

repository, future downloads from the repository will be done using git

https://sourceforge.net/

pull requests because partners will only need the updates, not the entire

project. Now, the developer can change directory to the local repository and

view the files, as shown here:

Work could continue from the current master branch, but in this case

the developer would like to improve the tribblers code and test the changes

before releasing them into the current version. To do this, the developer

creates a new branch called alternate . Here they can perform updates

and not affect the current project. They use the checkout function to

switch branches, as shown here:

An example of updating the working project is shown next. A new file is

created and added to the alternate branch. The tribblers developer

then returns to the master branch, as no changes are made to the

master branch, as shown here:

Work on the tribblers project could continue from the current master

branch, but now the developer has found a bug and has developed a patch to

repair the issue. To do this, the developer creates a new branch called

patch . Here, the developer performs the changes without affecting the

current project state. They use the checkout function, create the

patch branch with -b , and switch branches, as shown here:

An example of the patch file is the modification of new.c . The

new.c file is updated and committed within the patch branch. No

changes are made to the master branch, as shown here:

Now that the patch is complete, the developer returns to the master

branch. Assuming the patch has been thoroughly tested and approved, the

tribblers development team can now merge the fix in with the master

branch, as shown here:

Now it is time for the developer to make the changes available to the

entire tribblers worldwide team. The developer will create a shortcut name

for the remote repository called origin using git-remote . Next,

they push their changes back to the remote repository, as shown here:

Next, practice working with a Git repository in Exercise 17-1.

Exercise 17-1: Working with a Git Repository

In this exercise, you practice using git commands to manage a local

repository running on your system. Perform this exercise using the virtual

machine that comes with this book.

VIDEO Please watch the Exercise 17-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot your Linux system and log in as a standard user.

 Open a terminal session.

 Create the directory for the repository to store the project, and then initialize

Git:

 View the files created by the Git initialization process that are used for

version control:

 Create a file for the project and add it to the repository:

 View the status of the project and note that, at this point, it is staged but not

yet committed:

 Define the user and e-mail address for this repository, unless this is

predefined in the global configuration file:

 Change the file and watch the modifications:

 Although file1 has been modified, it is only staged at this point.

Commit the changes to the repository here:

 View the log file of the modifications. Git uses the commit numbers to track

versions:

Chapter Review

Orchestration tools allow system administrators to install and configure

hundreds of Linux systems from a single point of administration.

Developers use applications and tools to create consistent results for

operations and production. There are tools designed for collaboration,

operations, inventory, scheduling, and deployment.

The key behind orchestration systems is automation, which is important

for consistent deployments. Infrastructure automation ensures uniform

deployments that are for specific applications. Build automation focuses on

orderly and stable operating system installations on multiple servers or

clients.

Tools that reside on the orchestration build system are considered agent

tools; otherwise, they are considered agentless tools.

When code such as YAML, JSON, or XML is used to control

configurations and deployments, then the orchestration method is

considered infrastructure as code. Orchestration tasks are defined by

attributes set by system administrators that analyze systems to determine

their needs.

Without inventory management, orchestration becomes hugely difficult

because there is no knowledge of requirements for proper builds.

Orchestration requires knowledge of the type of virtual machines, networks,

hardware, and so on for accurate deployments.

Git is a revision control system designed to enhance collaboration and

version control over a large network. The Git utility serves this purpose by

allowing multiple developers to pull, clone, branch, add, and commit

changes to projects while mitigating race conditions.

Be familiar with the following key concepts about orchestration:

 Orchestration systems use software languages such as YAML, XML, JSON,

and others as a foundation for build automation.

 The most popular orchestration system is known as Kubernetes.

 A popular continuous integration/continuous deployment (CI/CD) tool is

Jenkins.

 Popular infrastructure as code (IaC) systems include Ansible and Terraform.

 To initialize a local git repository, use the command git init .

 The ~/<projectname>/.git directory has files and directories that

track project revisions.

 The ~/<projectname>/.gitignore file lists files to be ignored

during commit actions.

 The git add command will stage a file.

 Running git status will display the current state of the repository.

 Use git config to set parameters of the repository, such as

user.name and user.email .

 To visualize the project difference, run the git diff function.

 Changes are finalized using the git commit command sequence.

 To view a history of recent changes, run git log .

 Use git clone to download project source code from a remote

repository.

 Developers can also use git pull to download a project from a remote

repository.

 Use the git branch function to further development without affecting

the current software version.

 To work in the new branch, run the git checkout command.

 To merge an alternate branch with a master, run git merge .

Questions

 Select the serialization languages that are used in build automation. (Choose

three.)

 YAML

XML

 JSON

 AutoC

 In which orchestration process does the application not reside on the

orchestration system?

 Agentless

Agent

 Remote

 Local

 What are orchestration systems that mostly use scripts, coding, and libraries

called?

 Infrastructure automation

Procedures

 Infrastructure as code

 Automated configuration

 Bridgette is a Linux administrator tasked to create a cloud server. The code

starts as follows. Which technology is she using?

 Ansible

Git

 Terraform

 Kubernetes

 To download software source code from a remote repository to a local

repository, which of the following commands do you use? (Choose two.)

 git down

git clone

 git push

 git pull

git up

 When setting up a new Git project, the developer can create the .git/

directory and related revision files with which command?

 git commit

git going

 git a2i

 git init

 Which of the following commands will stage software changes within Git?

 git commit

git init

 git add

 git branch

 Which command is used to view the Git branch the developer is working

within?

 git status

git log

 git init

 git add

 Which of the following commands will show the current Git configuration?

 git commit

git log

 git pull

 git push

 Fill in the blank to complete the command to download a project from a

remote repository:

$ git ________

https://user@git.code.sf.net/p/dr/code drivesim

 branch

merge

 pull

 clone

 Fill in the blank to complete the command to download a project from a

remote repository:

$ git ________

https://user@git.code.sf.net/p/dr/code

 branch

merge

 pull

 clone

Answers

 A, B, C. YAML, XML, and JSON are used for orchestration build

automation.

 A. Agentless systems do not reside on the orchestration system.

 C. Infrastructure as code (IaC) deploys systems primarily with scripts, code,

and libraries.

 A. Ansible reads YAML scripts to build cloud-based servers. Terraform

uses JSON scripts.

 B, D. Developers can use the git clone or git pull command to

download a project’s source code from the remote repository.

 D. The developer can run git init to initiate a project. That will create

the .git/ directory and the related revision files.

 C. Use the git add function to stage software changes within the git

system.

 A. Use the git status to view which branch the developer is working

in.

 B. Run git log to view the current repository configuration.

 D. The clone function will download the drivesim project from the

remote repository and place it in a directory called drivesim .

 C. The pull function will download a software project from a remote

repository into the current git project directory.

CHAPTER 18
Understanding Virtualization and the Cloud

In this chapter, you will learn about

 Understanding virtualization

 Understanding containers

 Managing containers with Docker and Kubernetes

 Automating installations with Kickstart

In the course of the cycle, no significant changes have been found.

—Marie M. Daly, Albert Einstein College

The advent of virtual machines led to the cloud, which has allowed

companies to get rid of their data centers. Now, organizations can outsource

their computing like they outsource their electric power. Cloud computing

has made computing a utility. Organizations can now purchase only the

computing they need.

If a company hires 100 summer students, the company can rest assured

that 100 new identical systems can be built because of the cloud and virtual

computing environments. Also, using features of orchestration, these

systems can be built in minutes, instead of days, like in the 20th century.

This chapter dives into how virtualization led to the creation of

containers and cloud computing. Then, you will learn how to control and

secure these containers with Docker and Kubernetes. Let’s first explore

virtualization.

Understanding Virtualization

Virtualization creates a virtual computing environment that, to the

operating system, appears to be a physical environment. Virtual

environments sit on top of a physical environment, called the host

computer. The virtual environments are considered guest computers.

The guests are managed by a hypervisor .

In this section you will learn about the components related to virtual

machines, including the following:

 Hypervisors

 Thin vs. thick provisioning

 Virtualization file formats

 Managing virtual machines with virsh

 Virtual networking

 BLOB storage

 Virtual machine shortcomings

Let’s first learn about the role of the hypervisor.

Hypervisors

Hypervisors were initially created by IBM to provide programmers a

method of debugging an application without risking the integrity of the

operating system.

Hypervisors, also called virtual machine managers (VMMs), create a

boundary between the computer operating system and a logically isolated

instance of a guest operating system contained in a virtual machine (VM).

Hypervisors come in several types: embedded, Type 1, and Type 2. Since

a VM only accesses the hypervisor, it is unaware of the hypervisor’s type.

Type 1

A Type 1 hypervisor, also called a bare-metal hypervisor, is installed as part

of an operating system and has direct access to system hardware. This is

illustrated in Figure 18-1.

Figure 18-1 Type 1 (bare-metal) hypervisor configuration

Each “guest” appears as a dedicated machine but in reality shares system

resources with the “host” and other guest machines.

Examples of Type 1 hypervisors include the Linux Kernel-based Virtual

Machine (KVM), Microsoft Hyper-V, and Linux Foundation Xen.

Type 2

A Type 2 hypervisor, or hosted hypervisor, is an application installed on a

host server, as illustrated in Figure 18-2. Guest machines use the installed

hypervisor to access system resources via system calls.

Figure 18-2 Type 2 (hosted) hypervisor configuration

Embedded Hypervisor

An embedded hypervisor is used in embedded systems. An embedded

system is an independent or integrated device that contains a real-time

operating system (RTOS), controller and application software designed to

perform a task. (Some embedded systems will not have an RTOS.) An

alarm or car automation system is an example of an embedded system.

An embedded hypervisor is programmed directly into a processor.

Thin vs. Thick Provisioning

Thick and thin provisioning define how storage space is allocated on a hard

disk. When creating a virtual disk for a virtual machine, you have the

choice of allocating the entire drive (thick provisioning) or dynamically

allocating drive space as it is used (thin provisioning).

Thick provisioning is most efficient when the amount of storage

allocated is close to the amount of space used.

Thin provisioning dynamically limits the size of a disk, but only

allocates disk space as needed. Assume you have set a drive’s size limit to

100MB and only used 20MB of storage. The drive size is only 20MB, but

has the capability of growing to 100MB. Thin provisioning reduces the cost

of storage space, but requires more monitoring.

Virtualization File Formats

Table 18-1 lists the formats to store virtual machine files.

Table 18-1 Virtual Machine File Formats

Managing Virtual Machines with virsh

Red Hat designed libvirt as a management utility for multiple

hypervisors (KVM, LXC, Microsoft Hyper-V, VirtualBox, VMware, and

Xen). libvirt contains the command-line utility virsh and the

libvirtd daemon, which are used to manage guest machines. Install the

library and utilities by running yum install libvirt .

These management capabilities include the ability to stop, start, pause,

save, and migrate virtual machines and manage system devices. libvirt

also manages network interfaces, virtual networks, and storage devices.

Virtual Networking

When a virtual machine is initially created, it is usually operating in host-

only mode, which means it is not connected to a network (but VMs can be

created with networking as well). This section describes various

configurations used with virtual machines to connect them to a network.

NAT

A typical network consists of multiple host machines with unique IP

addresses. Rather than make these IP addresses public, you can create a

private network with world access using network address translation (NAT)

or IP masquerading. Both NAT and IP masquerading present one public

address for a network. When a host on the private network wishes to

communicate with the world, the source address in the packet is changed to

the public IP address. The process is reversed when the packet returns.

NAT permits one connection to the public IP address at a time; IP

masquerading permits multiple connections to the public IP address at a

time.

Bridge

A bridge is used to connect multiple segments of a network. Network

segments are used to split a network into subnetworks to improve security

and performance.

A bridge differs from a router in that the bridge does not analyze, filter,

or forward messages. Some routers also contain bridging functions.

Overlay Network

An overlay network is a computer network on top of another network using

logical links.

Imagine a container pod in which the containers are hosts on the same

virtual network, and a bridge attaches the virtual network to a physical

network. The virtual network is an overlay network.

Dual-Homed Network

A dual-homed network contains multiple network interface cards (NICs)

connected to the same network. Dual NICs are used to provide redundancy

and therefore fault tolerance.

The simplest form of redundancy on a dual-homed network is two NICs

(primary and secondary) configured as failover devices for each other. At

any time, only one NIC is connected to the network. If one NIC fails, traffic

is rerouted to the second NIC.

Bonding Interfaces

NIC redundancy is created by bonding two NICs. For example, assume two

NICs, enp0s1 and enp0s2 , and the bonding module is available.

To set up the bonding interface, create a file in

/etc/sysconfig/network-scripts named ifcfg-<bond#>

where # is the number of the bond interface. For this example, we will use

bond0 :

Edit the configuration files /etc/sysconfig/network-

scripts/ifcfg-enp0s1 and /etc/sysconfig/network-

scripts/ifcfg-enp0s2 to attach them to bond0 by adding or

modifying the following entries:

If you are using Network Manager, execute the command nmcli con

reload . Restart the network by executing the command systemctl

restart network . You can verify that the bond has been created by

executing the command cat /proc/net/bonding/bond# .

Multi-homed networks have multiple NICs attached to different

networks.

Virtual Switch

Network ports on virtual machines are associated with virtual network

adapters, which are in turn associated with a virtual switch. The software-

based virtual switch isolates and manages communications between VMs

on the network.

BLOB Storage

A BLOB (binary large object) is a collection of binary data that is

transmitted via HTTP. BLOBs are grouped into containers assigned to a

user account.

There are several BLOB types: block, append, and page. Each BLOB

type is used for a specific type of data storage, identified by a unique tag

called an ETag.

Block BLOBs

Block BLOBs are designed for data streaming and storage. Each block has

a unique ID and may store up to 100MB. A block BLOB can contain up to

50,000 blocks.

Block BLOBs may be updated by adding, replacing, or deleting data. In

order for the changes to be made permanent, they must be committed. If the

data has not been committed within a week, the data is removed.

Append BLOBs

Append BLOBs consist of a maximum of 50,000 4MB blocks and are used

for logs. Existing blocks may not be deleted or modified. Data written to

append BLOBs is always written to the end of the BLOB.

Page BLOBs

Page BLOBs consist of 512-byte pages and are used for random reads and

writes. The maximum size of a page BLOB is 8TB.

Virtual Machine Shortcomings

Virtual machines can grow to become gigabytes and terabytes in size

because each device provisioned is another computer image. Also, each

VM can be slow to boot, and as more resources are used, each system can

start performing poorly. To alleviate these and other issues, a new

technology called containers was created, as discussed in the next

section.

EXAM TIP A cloud VM instance is a single server located in the cloud.

The cloud-init utility configures the cloud instance using the

configuration file /etc/cloud/cloud.cfg .

Understanding Containers

Software developers create applications that support varied environments.

A computer system or node could be a desktop, laptop, tablet, or

smartwatch. Development is simplified when software developers do not

need to consider the specific hardware or operating system on which the

application will run. Containers make this possible by addressing the

inconsistencies among various types of hardware and operating systems.

A container is a runtime environment that consists of the files,

libraries, dependencies, and configurations in a single instance (see Figure

18-3). Containers do not require a hypervisor; instead they share resources

from the operating system and node. Examples of container platforms

include LXC, LXD, LXCFS, LinuxKit, Docker, and Podman.

Figure 18-3 Container

EXAM TIP The CompTIA Linux+ exam focuses on two container

platforms, Docker and Podman.

Containers are isolated at the application level rather than at the

operating system level. This means an error at the application level does not

affect the host. Compared to VMs, containers are much smaller (only

megabytes in size), much more efficient, much faster to start up and shut

down, and can handle more applications.

At this point, you should understand the following overriding definitions

for most container types before we proceed:

 Multiple processes, such as sshd or httpd , form a container ; but

ideally, they contain one process, for example, sshd only, for ease of

updating and troubleshooting.

 Containers may need external helper services, which are called

ambassador containers.

 Multiple containers form a pod. Containers within a pod share the

network and other resources. Again, pods should ideally contain one

container.

For example, one container runs the httpd process, the other container

the sshd process. Ideally, each container would launch from an

independent pod, but they both could share a single pod.

 Pods may need helper containers, which are called sidecars because

they ride alongside the pod’s process.

 Multiple pods form a deployment. The deployment starts, monitors,

and restarts pods that have died.

 Multiple nodes, for example, several servers and/or desktops networked

together, form a cluster. The CPUs and RAM from the various nodes

are pooled together, and deployments of pods are launched within the

cluster.

A cluster controls multiple pods, which are managed by a container

platform such as Docker or Podman; Kubernetes is a container platform that

manages clusters utilizing Docker to duplicate clusters in multiple regions

of the world and is covered later in this chapter. While CPU and RAM are

shared within the cluster, file storage is cached, so when programs restart,

the data no longer exists. To resolve this problem, persistent volumes must

be created.

In this section you will learn about container components, including the

following:

 Persistent volumes

 Container markup languages

Let’s start with preserving data from the guest operating system into the

host operating system with persistent volumes.

Persistent Volumes

In a container environment, a storage volume is a storage location (file) on

the host system, which is removed when the container associated with the

storage volume is removed. Persistent volume storage, which may be used

by a container or pod, will remain after the container or pod is removed.

This is like attaching an external hard drive to the cluster for the container

to save data to.

Container Markup Languages

Configuration files for Docker and Kubernetes use either JSON (Docker) or

YAML (Kubernetes) data files.

NOTE Kubernetes may use JSON, but best practices suggest the use of

YAML.

JSON

JSON, or Java Script Object Notation, is a human-readable, text-based,

data-serialization language designed to exchange data between a server and

web applications. JSON files are stored as <filename>.json .

Data serialization converts data to a format that facilitates

restoring data to its original structure. For example, JSON data may be

converted into JavaScript objects.

An object is an independent structure that consists of a collection of

related data. Although JSON is a subset of JavaScript, it may be used with

other languages such as C, C++, Perl, Python, and Ruby. JSON does not

support comments.

YAML

YAML, which stands for Yet Another Markup Language, is a human-

readable data-serialization language that is a superset of JSON. An

application that is a superset of another is an enhanced version of the

“parent” application and contains all the features of the parent application.

YAML is found in programming languages such as Python and Ruby

and is used to configure Docker and Kubernetes elements, which are stored

as <filename>.yaml or <filename>.yml .

Managing Containers with Docker and Kubernetes

As previously mentioned, getting applications to run consistently over

varied compute environments is resolved by using containers. Container

images contain the libraries and dependencies an application needs to run in

different environments.

To interact with containers, use the podman command or docker

command. The subcommands and syntax are the same for both commands.

Expect to see both commands on the CompTIA Linux+ exam. A few of

their subcommands and descriptions are shown in Table 18-2.

Images

Table 18-2 Subcommands for podman and docker Commands

The docker and podman command suite allows you to download

images created by other users, simplifying your creation of containers.

In this section you will learn about container management, including the

following:

 Getting started with Docker

 Deploying an existing container image

 Running a container image

 Configuring container persistent storage

 Removing containers

 Cluster management with Kubernetes

Let’s start by pulling a custom container from a container repository.

Getting Started with Docker

Container image registries contain prebuilt containers for almost every

purpose. These container registries are available at

https://docs.docker.com/docker-hub,

https://catalog.redhat.com/software/containers/explore, and many others.

To search the docker.io registry for available container images, use

the search subcommand for podman or docker :

Images

To search for a specific container image, for example, mysql , run the

following search with podman or docker :

Images

Running podman search --no-trunc docker.io/mysql

lists a more detailed description of the pod container image.

https://docs.docker.com/docker-hub
https://catalog.redhat.com/software/containers/explore

NOTE If you want to follow and continue along with this example, create

an account at https://hub.docker.com.

Deploying an Existing Container Image

To pull an existing container image from one of the remote registries,

authenticate and then pull the image as follows:

Images

To inspect the new image, run podman inspect or docker

inspect . This lists metadata information about the container, including

the architecture and operating system.

To view the newly installed container images, run the podman

images or docker images command. Notice how operating systems

such as Alpine, Debian, and Ubuntu are much smaller than a regular

installation. That’s the power of containers!

Images

Finally, to create an alias for a new image, use the tag subcommand

with docker or podman to help make tracking your images easier. To

create the new alias, you match the alias name with the IMAGE ID of the

container, as follows:

https://hub.docker.com/

Images

Running a Container Image

After you’ve found a container image that’s going to allow you to

administer Debian better or help you write that new application, it’s time to

connect to it using the podman or docker run subcommand, as

shown here:

Images

Using the -d option in this example runs the container in the background.

Running docker port or podman port exposes the ports used

by the image. To access the interactive terminal of the container

image, use the -i and -t options, as shown here:

Images

Once you run exit to exit from the container image, it stops. To start

it again, use the docker start or podman start command with

the -a and -i options to attach interactively, as shown here:

Images

In a separate terminal, you can view your running containers with the

ps subcommand of docker and podman . The -a option lists all

containers, including those that have exited, as shown here:

Images

Configuring Container Persistent Storage

To create persistent storage, you need to map a directory in the host to the

container. To do this you use the --privileged option, as shown here:

Images

In the preceding example, /media is the host directory where the

persistent storage will save to. The /mnt directory is the container’s

volume. Stepping through the example, you can see that data saved in the

container file persist.txt using the cat command is preserved on

the host.

Removing Containers

To remove a container, first stop it with the stop subcommand, and

remove it with the rm subcommand. Finally, you need to remove the

container image using the rmi subcommand, as follows:

Images

Cluster Management with Kubernetes

Kubernetes can manage a single node but works best with multi-container

use cases, such as a shopping website offering thousands of various items.

Also, Kubernetes can ease network communications of a cluster by

enabling a service mesh that manages the traffic between services.

The kubectl command allows you to run commands to manage the

Kubernetes clusters.

Use kubectl to deploy applications, compose solutions to instances,

and manage the cluster. Table 18-3 lists and describes some important

kubectl subcommands for you to understand for day-to-day use—these

are not part of the CompTIA Linux+ objectives.

Images

Table 18-3 Subcommands for the kubectl Command

To wrap up, let’s take a look at automating the installation of a Red Hat

node with Kickstart.

Automating Installations with Kickstart

Automating your Red Hat installations is offered by a feature called

Anaconda, which is a system installer for Red Hat class distributions. This

section details one way you can implement automation in your

environment. Anaconda and Kickstart are great knowledge to have as a Red

Hat administrator, but these are not covered on the CompTIA Linux+ exam.

Anaconda is an installer written in Python for Red Hat and other Linux

distributions. Anaconda identifies the architecture of a computer system and

configures an operating system (devices, filesystems, software, etc.) based

on the choices made on multiple install menus.

As part of the installation process, Anaconda stores configuration

choices in the file /root/anaconda-ks-cfg . This file should be

copied to the file /root/ks.cfg . The ks.cfg file may be used as-is

to perform an automatic install, or it can be modified via text mode (vi)

or the GUI Kickstart Configurator, system-config-kickstart .

NOTE Use the command yum -y install system-config-

kickstart to install the Kickstart Configurator.

The Kickstart configuration file is made up of multiple sections that

must be presented in a specific order. Most options within a section may be

specified in any order.

The command ksvalidator <config_file> will validate the

syntax of a Kickstart file, and the command ksverdiff

<config_file_1> <config_file_2> will display the differences

between two configuration files.

NOTE The command yum -y install pykickstart will install

ksvalidator and ksverdiff .

Once the Kickstart file is created and validated, it may be made available

via a drive connected to an install process, DVD, or network (including

PXE). The instruction inst.ks=<ks_file_location> will specify

the Kickstart location for the boot process. Network boots may require

specifying the network address (ip option) or location of the repository

(inst.repo=).

Chapter Review

This chapter described many of the configuration terms associated with

virtual machines, hypervisors, storage, networks, containers, and clusters.

Here are some key takeaways from this chapter that are important to the

CompTIA Linux+ exam:

 Hypervisors were created by IBM as a debugging tool.

 Hypervisors are called virtual machine managers.

 Hypervisors isolate the host (resource provider) and guest machine.

 Type 1, or bare-metal, hypervisors have direct access to system hardware.

 Type 2 hypervisors are applications installed on the host.

 Thick provisioning allocates all the disk space when the disk is created.

 Thin provisioning dynamically allocates disk space.

 OVF is a file used to create virtual machines. It consists of a single

directory that contains all the metadata needed to create a virtual machine.

 VDI is the default Oracle VirtualBox storage.

 VMDK was designed by VMware and is used by VirtualBox and QEMU.

 virsh uses libvirtd , the libvirt daemon, to access virtual

machines from the command line.

 NAT, or network address translation, uses a single IP address to represent a

private computer network.

 Bridging is a method of joining two networks as one to extend a network.

 Overlay is a method of having one network sit on top of another network.

 A dual-homed network uses multiple interfaces to attach to one network.

 Bonding is a method of creating a dual-homed network.

 cloud-init is a bootstrap utility for containers.

 Containers virtualize applications rather than machines.

 Persistent volumes are used for storing container data. Once the container is

removed, data stored on persistent volumes will remain available.

 JSON and YAML are markup languages that may be used for data

serialization.

 Use the docker or podman command to manage container images.

 Use the kubectl command to manage clusters.

Questions

 Which command will list your container images?

 docker show

docker list

 docker images

 docker display

 Which method of storage provisioning allocates disk space dynamically?

 Thin

Persistent

 BLOB

 Thick

 Which virtualization file format is a single directory containing multiple

configuration files?

 HDD

OVA

 OVF

 VMDK

 Which virtualization file format is a single directory containing an archive

of an OVF file?

 HDD

OVA

 OVF

 VMDK

 Which command-line utility was developed by Red Hat as a management

tool for the KVM hypervisor?

 libvirt

vboxmanage

 virsh

 vmware-cmd

 A container is an example of:

 Type 1 virtualization

Type 2 virtualization

 Embedded virtualization

 None of the above

 Persistent volumes are associated with which of the following?

 Pods

Containers

 Thick provisioning

 Thin provisioning

 Which of the following properties apply to an append BLOB? (Choose

three.)

 New data must be appended.

Existing data cannot be modified.

 Existing data can be modified.

 Existing data cannot be deleted.

 Which BLOB type is used for random reads and writes?

 Append

Page

 Block

 Bob Loblaw’s Law Blog

 Data serialization converts data to a format that facilitates restoring data to

its original structure. Which tools provide data serialization? (Choose two.)

 vi

YAML

 JSON

 nano

 cloud-init is a bootstrap facility whose configuration file is:

 /etc/cloud.cfg

/etc/cloud/cloud.config

 /etc/cloud.config

 /etc/cloud/cloud.cfg

 Bonding is associated with which network type?

 NAT

Bridge

 Dual-homed

 Overlay

 An overlay network would be associated with:

 Pods

Dual-homed network

 NAT

 Bridge

Answers

 C. The docker images (or podman images) command will

display the images that reside on the host computer.

 A. Thin provisioning allocates disk space as necessary. Thick provisioning

allocates all disk space. Persistent volumes are used with pods to ensure

data remains once a pod closes. BLOB storage is block data storage

accessed via HTTP or HTTPS.

 C. OVF files contain a single directory that consists of configuration files

used to configure a virtual machine.

 B. The OVA file is an archive of the OVF file.

 C. virsh is the command-line utility used to manage KVM. virsh is a

part of libvirt . libvert is a set of tools used to manage virtual

machines.

 A. A container is an example of Type 1, or bare-metal, virtualization.

 A. Persistent volumes are associated with pods. Pod is the name for a

container or group of containers within Kubernetes.

 A, B, D. An append BLOB is used for logging data. Existing data in append

BLOBs may not be modified or deleted, and any new entries are appended

to the end of the BLOB.

 B. The page BLOB is used for random read and write operations.

 B, C. YAML and JSON are markup languages that facilitate data

serialization.

 D. /etc/cloud/cloud.cfg is cloud-init ’s configuration file.

 C. A dual-homed network is used to provide network card redundancy on a

single network. This is accomplished by bonding multiple NICs.

 A. An overlay network is a network that sits on top of another network. In

the Kubernetes environment, each container in a pod is assigned an IP

address on a local network assigned to the pod. This network may sit on top

of a physical network.

CHAPTER 19
Troubleshooting and Diagnostics

In this chapter, you will learn about

 A standardized troubleshooting model

 Troubleshooting computer problems

 Troubleshooting network problems

Humans must remain in the loop.

—Kerrie L. Holley, IBM

When it comes to system security, one of the biggest issues companies face

is insider threats. In this chapter, we tell the story of FRMS Corp., a

children’s toy company. FRMS plans to merge with SGMF, Inc., which

offers excellent packaging solutions for toys, and executives see the merger

as a great fit.

As is often the case with such ventures, staff get nervous about what is

going to happen to them, so they plan to protect their jobs at FRMS by any

means necessary, thus making them internal threats.

A Standardized Troubleshooting Model

Mugabe has experience with mergers and acquisitions (M&A) and as a lead

engineer for SGMF understands the issue of internal threats. His great

patience, understanding of common vulnerabilities and exposures (CVEs),

and real-world experience make him a great troubleshooter. Mugabe plans a

seven-step approach to handling computer- and network-related issues

similar to the approach mentioned in Chapter 14:

 Identify the problem. Mugabe determines what has happened by asking

questions, detecting symptoms, and reviewing error messages.

 Determine recent change. Mugabe identifies the single change in the

system, whether it’s new software, new hardware, or a new configuration.

 Create a causal theory. Using information gathered from the previous

steps, Mugabe develops a theory that could explain the problem.

 Select the fix. Mugabe usually works with a team of other SGMF

engineers, including Jessica and Carlos, to arrive at a solution and discuss if

the fix will cause other problems.

 Attempt and verify the fix. At this point, Jessica and Carlos work together

to implement the fix, making sure the problem is solved and does not

return. Before unveiling the fix to the customer, Mugabe verifies the repairs

made by his team.

 Ensure customer satisfaction. Mugabe, Jessica, or Carlos verifies the

client is happy. A final word is shared with their supervisor to let them

know the problem is fixed.

 Complete the paperwork. Mugabe and his team document the solution

within a ticketing database to quickly identify the issue if it occurs again.

Images

EXAM TIP Knowledge of the seven-step troubleshooting steps is great

for the CompTIA A+ exam but is not a requirement for the CompTIA

Linux+ exam.

Troubleshooting Computer Problems

Mugabe starts by collecting an inventory of computer systems used by the

FRMS staff. Fortunately, like SGMF, FRMS is a Linux-only environment,

having learned years earlier that Linux is a high-quality, well-supported

operating system with fewer vulnerabilities than closed-sourced operating

systems.

Tomika, Davy, Gary, and other engineers at FRMS are working to

disrupt the merger, providing Mugabe and his team with an inaccurate

inventory. From past experience, Mugabe has learned to “trust, but verify.”

Therefore, Mugabe will verify and validate computer issues using the

following approaches:

 Verify hardware configuration

 Verify CPU performance

 Verify memory performance

 Validate storage performance

 Validate other devices

Images

NOTE The events, characters, and firms depicted in this scenario are

fictitious. Any similarity to actual persons, living or dead, or to actual firms

is purely coincidental.

Verify Hardware Configuration

Mugabe has a couple of tools in his toolbox to verify the configuration of a

computer without opening the system. These tools are the lshw and

dmidecode commands.

The lshw command will “list hardware” installed on a Linux system,

reporting an exact memory configuration, firmware version, motherboard

configuration, CPU details, CPU cache details, bus speeds, and more. The

report provided by Gary, unhappy about the coming merger, shows that

each computer is configured with 2GB of RAM and no CD-ROM drive.

Mugabe runs the lshw command using the -short option, as shown

here:

Images

The report shows that each system actually has 1GB of RAM and a CD-

ROM installed. Later, Mugabe will complete a physical inspection to

validate his findings.

The other command at Mugabe’s disposal is dmidecode , which lists

the computer’s BIOS while in multi-user mode. The output shown next uses

the --quiet option and shows that the mainboard supports ISA, PCI,

and CD-ROM booting:

Images

To support his case for the merger, Mugabe gathered information,

identified changes, and finally documented his findings into the ticketing

system.

Verify CPU Performance

Davy at FRMS is the kind of guy who never forgets anything, especially if

it affects his job, so without any paperwork he assures Mugabe that the

CPU load averages are greater than 50 percent! The load average defines

how busy a CPU is; the more jobs that are ready to use the CPU (in other

words, runnable jobs), the higher the load average.

To observe the CPU model, number of cores, and options, Mugabe can

run lscpu or review the contents of the /proc/cpuinfo file to

determine if it is underpowered, as follows:

Images

The CPU certainly looks capable enough for their applications, so to

examine CPU load averages, Mugabe employs the uptime , w , and

sar commands:

Images

The uptime command shows how long a system has been running,

and it outputs system load averages. In this example, the load average

displays 1 percent over the past minute, 4 percent over the past 5 minutes,

and 5 percent over the past 15 minutes—nowhere near the 50 percent load

averages stated by Davy.

The w command shows who is logged in and what commands they are

running. Mugabe uses this output to determine which programs are loading

the system and from which accounts.

Finally, sar is the “system activity reporter.” This is an all-purpose

tool that lists performance information for CPU, RAM, I/O, disk,

communication ports, graphics, and so on. Running sar 2 5 will collect

system activity data and display five lines of output, one for every two

seconds. By default, the sar command lists CPU performance details,

including user time, system time, iowait, steal, and idle states.

To support the case for the merger, Mugabe notes that system loads are

less than 10 percent, nowhere near the 50 percent stated by the FRMS

representatives.

Images

NOTE The time command is a useful tool. Simply run time

<program_name> to determine how much CPU time is used by an

individual program.

Verify Memory Performance

Jessica indicates from FRMS reports that all their systems require memory

upgrades. To review memory and swap performance, Jessica runs lsmem

and examines the /proc/meminfo file to observe how much memory is

being used and how much is available, and then she runs vmstat 2 5 to

review memory performance, as shown here:

Images

Images

The first record shows free memory and file cache averages since the

system booted. Additional records list activity for the two-second sampling

period Jessica defined. She notices from the output that there is no memory

exhaustion for their applications.

As with the sar command, vmstat 2 5 reports virtual memory

statistics five times, every two seconds. The vmstat command displays

the amount of memory utilized in swap space, how much is idle, the amount

used as buffers, and the volume saved as cache. The command also shows

how much data is swapped to and from disk.

Out of Memory Killer

The OOM Killer, or Out Of Memory Killer, is a process killer that engages

from the Linux kernel when the system is critically low on memory due to

too many applications running or memory leaks. If enough processes begin

to use memory, there will not be enough to support them all. So, the kernel

invokes the OOM Killer to review the processes and kills one or more of

them to free up memory and keep the system running.

The OOM Killer reviews all processes and assigns a severity score based

on memory utilization and the number of child processes. The process with

the highest score is killed. For security, the root, kernel, and important

system processes are given much lower scores. If killing a process does not

free enough memory, the server will soon crash.

To find whether the OOM Killer was the reason why processes were

killed, you would run the following command:

Images

In this case, mysql was killed, with a process identification number or

PID of 4121 .

The OOM Killer only gets invoked when the system is critically low on

memory. Consequently, to avoid it, you can either reduce memory

requirements, increase the memory, or increase swap space.

Increasing Swap Space

Mugabe’s years of experience in technology and management help him

understand that there are quick ways to stop the OOM Killer, and he

decides to mitigate the threat by increasing swap space. Swap space can be

added by using an additional new swap hard drive, by using an additional

swap partition, or by adding a swap file using the swapon command, as

shown in Figure 19-1.

Images

Figure 19-1 Additional swap space devices

To view the current swap space status, look at the contents of the

/proc/swaps file, run the swapon command with the -s option, or

even try the free command to view memory and swap utilization, as

shown here:

Images

After the new swap device is created, it can be enabled using swapon .

Tomika of FRMS intends to impede the merger by suggesting SGMF wait a

month for new hard drives so they can be used as additional swap space.

SGMF’s Mugabe decides that the simplest way to proceed is to add a swap

file.

Adding a new swap disk would require purchasing and installing a new

hard drive. Addition of a swap partition is even tougher, as data must be

backed up from an existing drive and repartitioned to increase the swap

partition, and then the data must be restored. Adding a swap file simply

requires creating an empty file using the dd command, assuming there is

space available in the filesystem, as shown next:

Images

After adding the swap file, you can enable it using the swapon

command, as shown here:

Images

Mugabe is warned that the permissions are insecure. This is fixed with

chmod and chown , as shown here:

Images

Next, he ascertains that the swap file is added using the -s option to

swapon . The Priority is set to -3 , meaning it will be used after any

Priority setting of -2 or -1 is filled. Once he has completed using the

swap file, it can be disabled with swapoff and removed with rm , as

shown here:

Images

Work with Mugabe to add a swap file in Exercise 19-1.

Exercise 19-1: Working with Swap Space

In this exercise, you practice using swap space commands to manage and

troubleshoot memory utilization. Use the virtual machine that comes with

the book.

Images

VIDEO Please watch the Exercise 19-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 Boot your Linux system and log in as the student1 user.

 Open a terminal session.

 Switch to the root user account by entering su - followed by

student1 for the password.

 Run swapon -s to review how much space there is currently.

 Create a swap file using the dd command by running the following:

Images

 Run swapon swapfile to enable your new swap space.

 Run swapon -s to verify the space was added.

 Run swapoff swapfile to disable the swap space.

 Run rm swapfile to return the computer to its previous state.

Validate Storage Performance

Gary of FRMS informs Mugabe that disk drive performance is subpar and

that they need to budget for better and faster hard drives. Mugabe puts on

his thinking cap and realizes that tuning some simple kernel parameters can

help improve performance and save time and money, expediting the

merger.

He looks at the result of the scheduler kernel variable found in the

directory /sys/block/<disk device>/queue/ , which can be set

to none , mq-deadline , kyber , or bfq :

Images

Mugabe knows that hard drive I/O performance is application dependent

and can improve depending on the setting, as shown in Table 19-1.

Images

Table 19-1 Disk Drive scheduler Settings

Bandwidth Fair Queuing, or bfq , is in general best for single-user

systems such as desktops. The none scheduler is great for SAN or

RAID systems because they provide their own scheduling. The kyber

scheduler tunes itself to attain the lowest latencies. Finally, the mq-

deadline scheduler is good for multi-user environments.

Images

NOTE Knowledge of the scheduler features is not a CompTIA

Linux+ exam requirement.

Mugabe analyzes I/O performance first using iostat , as shown next.

For his analysis, he runs the corporate applications and uses the -z option

to just observe drives that are in use. Also, measurements will take place

over four seconds, and he only requires two outputs.

Images

The iostat output shows read and write activity per second and total

I/O over the entire eight-second period on drive /dev/sda .

To test again and see performance results for mq-deadline , he

changes the scheduler setting by updating the kernel value, as shown

here:

Images

Images

Finally, he changes scheduler to bfq and then measures

performance:

Images

Another tool in Mugabe’s tool case is the ioping command, which

measures disk I/O latency in real time. Here are some examples. First he

measures the disk I/O latency.

Images

He uses the -c option to limit output so as not to use ^ C to complete

the session:

Images

Finally, he uses ioping to measure disk latency for the current (or

other) directory, as shown here:

Images

In the end, Mugabe finds that simply tuning the disk drive’s scheduling

parameter saves the firm millions of dollars in hard drive upgrades and

labor expenses, making the merger more amenable. To make the changes

permanent, he uses features of tuned to enable the new scheduling value

at boot time, as shown next.

Images

NOTE Knowledge of the tuned features is not a CompTIA Linux+

exam requirement.

Images

Since the “active profile” shows as virtual-guest , Mugabe

modifies the tuned.conf file located in

/usr/lib/tuned/virtual-guest/ . (Other tuned profiles are

defined in the /usr/lib/tuned/ directory.) To make bfq the I/O

scheduler at boot time, he uses

Images

where elevator is used to specify the desired I/O scheduler .

Validate Other Devices

Mugabe has several troubleshooting tools and tricks in his toolbox as well

as several ways to run them. Most of the time he will run the commands

within a pseudo-terminal, much like what is seen when logging in from a

display manager (see Figure 19-2).

Images

Figure 19-2 Working with pseudo-terminals

To see the pseudo-terminal value, he runs the tty command, as shown

in Figure 19-2. In this case, Mugabe sends HELLO THERE from one

pseudo-terminal to the other using the command echo HELLO THERE

> /dev/pts/0 from the /dev/pts/1 pseudo-terminal. This allows

him to send error messages to different locations during troubleshooting.

There are also six alternative virtual consoles. These can be accessed

with the key triad of Ctrl-Alt-F{2,3,4,5,6,7} , where Ctrl-

Alt-F1 will return the user to the graphical desktop on Red Hat–class

systems. On Debian-class systems, the key triad is Ctrl-Alt-

F{1,2,3,4,5,6} and Ctrl-Alt-F7 returns the user to a graphical

desktop. Figure 19-3 shows the result of using Ctrl-Alt-F6 and the

result of the tty command, which shows Mugabe is using terminal

/dev/tty6 .

Images

Figure 19-3 Using the virtual console

Virtual consoles are useful on systems when the display manager hangs

due to a runaway process.

Images

NOTE Many systems do not allow logging in as root by default. This

setting is defined in /etc/securetty , which includes terminals where

root is allowed to log in. Comment terminal lines using # to disallow

logging in from that terminal.

Troubleshooting File-Related Issues

Robert, another FRMS internal threat, informs Mugabe that they are out of

disk space because of an error message that says “cannot create new files”

or something similar. When Mugabe runs df , he can clearly see that there

is plenty of disk space left. Using df -i on an ext4 -type filesystem

shows him the real problem, which is the system is out of inodes:

Images

To increase the inode count, the filesystem will need to be re-created by

backing up all the data and then using mkfs.ext4 -N 1000000

/dev/sda1 to double the inode count. Once the data is restored, users

will be able to create new files. Meanwhile, Mugabe will work with

management and determine if they can switch from an ext4 to XFS

filesystem, which automatically builds new inodes when required.

Images

NOTE Administrators must externally label or banner backup tapes to

know they are restoring the correct versions of files.

Troubleshooting Directory-Related Issues

An FRMS insider threat named Coughin made it so that anyone could

remove anyone else’s files from the shared sales directory folder. He

was able to run chmod -t sales , which removes the sticky bit, and

cause the trouble.

Mugabe must fix this and reenable the sticky bit. He simply uses the

chmod +t sales command on this directory. Now, only file owners

can remove their files; that is, if you don’t own the file, you cannot remove

the file.

Changing Keyboard Maps

A few frustrated staffers (also known as internal threats)

concerned about the merger have decided to alter the keyboard maps to

work well, but not great. Mugabe uses localectl to fix this issue. He

notices the keymap is set to us-mac instead of us . He fixes this as

follows:

Images

Troubleshooting Printers

Staff members at FRMS have never set up printers on Linux because they

always failed to work. Mugabe does some research and finds that the

printing service, CUPS, is not enabled. He fixes the issue and verifies that

CUPS port 631 is listening by using netstat and lsof , as shown

here:

Images

Images

Finally, Mugabe ensures printing capability for future reboots by running

systemctl enable cups , as shown next:

Images

Verifying Graphics Cards

Several systems have NVIDIA graphics cards that are not functioning.

Mugabe uses lspci and lshw to study the issue, as follows:

Images

Since NVIDIA does not show in any of the output, it is clear to Mugabe

what the issue is: the drivers have not been installed for the NVIDIA

graphics cards. After he downloads the GPU drivers from NVIDIA and

installs them, the cards function.

Troubleshooting Network Problems

Getting the network interface installed is only half the battle. To enable

communications, network administrators use a variety of testing and

monitoring tools to make sure the network is working properly.

As Mugabe continues with his system and network analysis, he will

verify and validate network issues using the following approaches:

 Verify network performance

 Validate user connections

 Validate the firewall

Verify Network Performance

Again, Mugabe has several software tools in his tool case to configure,

monitor, and troubleshoot networks. To view network status, he uses the

ip command. For example, by running the command ip addr show ,

he can see the current network devices and their status, as shown here:

Images

The ip command can also configure networking, routing, and tunnels,

and has built-in features to configure IPv6 networks as well.

Mugabe can also use the ifconfig command to configure networks.

Like the ip command, the ifconfig command can assign IP

addresses, netmask addresses, broadcast addresses, and more. Plus,

ifconfig provides interface error information, such as dropped packets,

collisions, and link status, as shown here:

Images

Mugabe can run ip -s to get interface information.

To determine which driver to use with network cards, Mugabe uses the

lspci command with the -v option. This provides more details about

the network card, including model and IRQ setting, as shown here:

Images

The lspci command can also be used to discover high-performance

networking cards (for example, those that are RDMA capable). RDMA

(Remote Direct Memory Access) over Ethernet allows direct access to the

memory of one computer from the memory of another without using the OS

of either system, thus resulting in low latency and high throughput. If any of

the network cards were RDMA capable, lspci would display the term

InfiniBand . Since this does not appear in the preceding result, the

FRMS computers do not support RDMA.

Images

NOTE Performance can also be improved by using UNIX sockets. UNIX

sockets are for interprocess communications to allow the exchange of

processes on the same system, where IP sockets allow process

communications over a network.

Troubleshooting Local Area Network Performance

Users complain to Carlos of long delays and high latency when accessing

computers on the network. Their systems are named after vegetables to

remind staff that personal health is of the utmost importance. When users

ssh or ping systems named tomato , cucumber , zucchini ,

and so on, it takes at least five minutes to get a response.

Carlos first suspects the timeouts and high latency issues are due to

network saturation. He runs iftop to monitor traffic bandwidth. The

iftop command is similar to top in that it measures activity and

automatically updates every two seconds. The results are shown in Figure

19-4 and indicate normal network activity.

Images

Figure 19-4 Output of iftop command

Images

EXAM TIP For command updates similar to top and iftop , try

using the watch command. For example, try running watch uptime

to visualize new uptime and load outputs every two seconds.

Another powerful network throughput measuring tool in Carlos’ tool

case is iperf . The iperf command evaluates bandwidth limitations

over a specific path, so a server and client are required for the command to

function successfully. In the following example, Carlos evaluates the

bandwidth, loss, saturation, and latency between the client and the DNS

server. On the DNS server, he starts the iperf server program by running

iperf -s , as shown in Figure 19-5.

Images

Figure 19-5 Starting the iperf server

On the client machine, he runs iperf in client mode and lets it run for

a few seconds to measure network activity and latency, as shown in Figure

19-6. Again, Carlos sees that network performance is acceptable.

Images

Figure 19-6 Running the iperf client

Troubleshooting Name Resolution Issues

Carlos remembers a similar case while working as a summer intern with the

U.S. government. The system is checking DNS tables first to resolve

domain names, and after a five-minute timeout, it performs local domain

name resolution. He therefore modifies the hosts record in

/etc/nsswitch.conf , changing it from

Images

so that the /etc/hosts file is checked before /etc/resolv.conf

when resolving hostnames. Now users access their “salad ingredients” (that

is, hosts named after vegetables) much faster. Carlos uses tools like host ,

nslookup , and dig to verify name server status.

Images

EXAM TIP Knowledge of the hosts: record is the only entry of

/etc/nsswitch.conf tested on the CompTIA Linux+ exam

Troubleshooting Dynamic IP Address Issues

Users complain to Jessica that they cannot get an IP address from the

DHCP server. She asks the users to try releasing the address with the

dhclient -r command and renewing the address by running

dhclient . The users report back that they still cannot obtain an IP

address.

She also dumps the /var/lib/dhclient/dhclient.leases

file and sees there are no connections defined there. This explains part of

the reason why users cannot get an IP address from the DHCP server.

Next Jessica modifies the /etc/dhcp/dhclient.conf file and

alters how it communicates with the DHCP server to resolve the issue.

Images

EXAM TIP Knowledge of the /etc/dhcp/dhclient.conf is

good to know for the CompTIA Linux+ exam.

Troubleshooting Gateways with sysctl

As mentioned in Chapter 15, IP forwarding must be enabled for a Linux

system to act as a network router or gateway. To verify whether IP

forwarding has been enabled, run cat

/proc/sys/net/ipv{4,6}/ip_forward , as shown here:

Images

Alternatively, you can use the sysctl command (not to be confused with

the systemctl command, which manages run levels), as follows:

Images

The sysctl command is used to configure kernel parameters that tune

the computer. Tuning can help improve computer performance by up to 50

percent, depending on the application. To view all the kernel tunables, use

the -a option, as shown here:

Images

Once the system is satisfactorily tuned, make the new values permanent

by modifying /etc/sysctl.conf or the /etc/sysctl.d/

directory. Jessica wants to make the system a routable device as well as

make it permanent at boot time. To accomplish this, she does the following:

Images

Now the system can be used as a gateway device to other networks.

(Updating /etc/sysctl.conf with the cat command, as previously

mentioned, would have worked as well.)

After reboot, the system reports that IP forwarding is automatically

enabled at boot time, as shown next:

Images

Validate User Connections

Gary reports to Mugabe that several users are locked out of their login

accounts. This just started happening when the FRMS systems merged with

the SGMF network. Mugabe starts by testing whether users can log in

locally without Kerberos or LDAP.

He scans the /etc/passwd file and finds the usernames are there, as

they should be, and that there is an x in the second column so that the

system knows to find passwords in /etc/shadow . He also verifies that

users are listed in /etc/shadow . Next, he attempts logging in as various

users using su - <username> and is successful. Since he is able to

access user accounts locally, there must be an issue with remote or external

directory services.

He glances at the /etc/nsswitch.conf file on the newer systems

and notices that the passwd, shadow, and group fields only search files

(/etc/passwd , /etc/shadow , and /etc/group), as shown here:

Images

Part of what will make the merger successful is that both companies,

FRMS and SGMF, use LDAP directory services for remote authentication.

They also have identical password policies in that passwords should be at

least eight characters long, with two uppercase characters and one special

character that is defined in PAM (introduced in Chapter 18). If this policy is

violated, the account cannot be used.

Images

NOTE The settings in /etc/login.defs only affect shadow

utilities. The settings in /etc/pam.d/passwd affect a specific

command. For example, the file /etc/login.defs specifies a

minimum length for a user password. The PAM file

/etc/pam.d/passwd overrides a password length defined in

/etc/login.defs .

So that users can access the LDAP server to be authenticated, Mugabe

updates /etc/nsswitch.conf as follows:

Images

Users who are following the policy are now able to log in successfully.

Images

NOTE To join the Linux system to a Windows Active Directory domain,

use the winbind directive within /etc/nsswitch.conf .

Validate the Firewall

Davy and Tomika of FRMS notify Carlos that he may have forgotten about

the SSH issue users are having, but Davy has not forgotten about the issue

and needs Carlos to give this some attention, as their policy requires

response times within 24 hours.

Carlos’ memory is not as good as Davy’s, but he gets on the case

because he wants a successful merger. He attempts using SSH as a FRMS

user and reproduces the issue. He cannot log in via SSH.

Images

EXAM TIP Poor firewall settings cause most network-related issues,

especially if a service is not available.

He next moves to the SSH server and verifies SSH is running with

systemctl , as shown here:

Images

The results show that the sshd service is enabled.

Next, he investigates the firewall. He runs firewall-cmd to

investigate whether port 22 is open, as shown here:

Images

The results show that port 22 using the TCP protocol for the SSH service

is blocked. Apparently, the ACL allows features like Samba and DHCP, but

not SSH. The ACL is too restrictive. Carlos changes the rule using

firewall-cmd to unblock port 22 and unblock the TCP protocol for

this service, as follows:

Images

Running firewall-cmd --add-service ssh opens port

22/TCP so that users can now access SSH. So that the port is open on

following reboots, he runs the firewall-cmd --add-service ssh

--permanent command string. SSH shows as one of the open ports

when he runs the firewall-cmd --list-services command

with options.

Finally, he tests whether users can log in to the system via SSH, and he

finds that users from FRMS and SGMF can now access the SSH server.

Case closed—and even Tomika is impressed.

Practice working with network troubleshooting and performance

commands in Exercise 19-2.

Exercise 19-2: Troubleshooting Networking Issues

In this exercise, you practice using network and firewall commands to

manage and troubleshoot a network connection. This exercise assumes two

systems are connected, as follows:

 sysA IP address 10.1.1.2/24 (SSH server)

 sysB IP address 10.1.1.3/24

Images

VIDEO Please watch the Exercise 19-2 video for a demonstration on how

to perform this task.

Complete the following steps:

 From sysB , test the network connection to sysA with the ping

command:

$ ping 10.1.1.3

 From sysA , switch to the root user account by entering su -

followed by password for the password.

 Disable network activity at sysA :

sysA # systemctl stop network

 From sysB , test the network connection to sysA with the ping

command:

sysB $ ping 10.1.1.3

 Re-enable network activity at sysA :

sysA # systemctl start network

 Verify the SSH server is running on sysA :

sysA # systemctl status sshd

If it is not running, start the SSH server with systemctl :

sysA # systemctl start sshd

 Even though the SSH server is running, block access to the service by

typing the following firewall-cmd at sysA :

sysA # firewall-cmd --remove-service ssh

 From sysB , attempt to log in via SSH. This should fail because the SSH

service is blocked by the firewall.

sysB $ ssh student1@10.1.1.2

 Re-enable access to the service by typing another firewall-cmd at

sysA:

sysA # firewall-cmd -reload

 From sysB , attempt to log in via SSH. This should succeed because the

firewall port is now opened.

sysB $ ssh student1@10.1.1.2

Chapter Review

This chapter focused on troubleshooting, diagnostics, and performance

tuning of hardware and networks. There are several software tools available

to test CPU performance, RAM usage, and disk drive efficiency. Many of

the tools read hardware states from the /proc and /sys pseudo-

directories. Administrators can learn details of CPU, RAM, IRQ settings,

and more, by reviewing files in /proc .

With respect to RAM shortages, administrators can increase swap space

to prevent the OOM Killer from killing programs. If a swap partition is not

available, a swap file can quickly be created and added as swap space.

Hard drives are tunable through a setting called scheduler. The possible

disk drive scheduler settings are none , mq-deadline , kyber , and

bfq . Each organization needs to evaluate which setting is best for its

environment. Once the organization determines which is best for its

applications, it can make the setting permanent using the tuned utility.

Administrators use the systemctl command to enable and disable

services on a Linux server, such as SSH, FTP, Telnet, and shared printers.

Several familiar tools are available for troubleshooting networks, but

most of them are not IPv6 friendly. However, the relatively new ip

command replaces many networking commands that are normally used, and

it handles IPv6 setup and troubleshooting as well.

Unfortunately, too often a service is running and available but users are

unable to access it. Most of the time this is due to the firewall blocking the

service. The fix is straightforward, of course (open the port for the service),

but troubleshooting these types of issues can take hours to diagnose.

Review the following key points for exam preparation:

 The /proc/cpuinfo file provides details of the CPU installed.

 The uptime command shows how long the system has been running and

load averages.

 Run watch uptime to monitor uptime changes every two seconds.

 The w command shows who is logged in to the system and what they are

doing.

 Running sar allows administrators to see performance info on CPU, disk,

RAM, and so on. The /proc/meminfo file provides details of the RAM

installed.

 Use the dd command to create a swap file.

 Run mkswap to configure the new file as swap space.

 Enable the new swap space with the swapon command.

 Swap space can be disabled using swapoff .

 To access the second virtual console, run Ctrl-Alt-F2 .

 Where root users are allowed to log in is found in the /etc/securetty

file.

 Running df -i will display the number of inodes available on a

filesystem.

 Use the lsof -i command to list listening network ports.

 Use the lspci -v command to verify graphic card installs.

 Use ip addr show to display network card settings.

 Run the dhclient -r command to release an address from the DHCP

server.

 If you have difficulty connecting to a DHCP server, validate settings within

/etc/dhcp/dhclient.conf .

 The iftop command measures network activity, updated every two

seconds.

 Use sysctl to change kernel settings, such as

/proc/sys/net/ipv4/ip_forward .

 Modify /etc/sysctl.conf so that ip_forward is enabled at boot

time.

 Name server settings can be added within /etc/nsswitch.conf ,

such as LDAP, Active Directory, and so on.

Questions

 Which option to the lshw command will provide a hardware installation

summary with device trees showing hardware paths?

 -X

-summary

 -short

 -s

 Which command lists the system’s BIOS while in multi-user mode?

 dmidecode

biosview

 bview

 lsbios

 Commands like w and uptime only provide output once. Which

command can be run with uptime or w to have the output automatically

update every two seconds?

 look

watch

 rerun

 repeat

 Which system activity reporter function will list CPU, RAM, I/O, disk

activity, and more, with five outputs displaying the result every two

seconds?

 sar -A -s 2

sar -A -s 2 -i 5

 sar -A 5 2

 sar -A 2 5

 Which commands list memory performance information? (Choose two.)

 vmstat

memviewer

 perfmonitor

 lsram

sar

 Which command displays how much memory and swap are available on a

Linux system?

 free

swapon -s

 dd

 lsram

 Which kernel variable can be changed to either none , mq-deadline ,

kyber , or bfq to change storage scheduling on drive /dev/sda ?

 /proc/block/sda/queue/scheduler

/sysv/block/sda/queue/scheduler

 /sys/block/sda/queue/scheduler

 /sys/block/sda1/queue/scheduler

 Which command will display disk I/O latency?

 pingio

diskio

 lsdisk

 ioping

 Which commands display disk I/O rates? (Choose two.)

 lssda

sar

 iostat

 swapon

 Which command will block access to the SSH server?

 firewall-cmd --del-service ssh

firewall-cmd --remove-service ssh

 firewall-cmd --block-service ssh

 firewall-cmd --disable-service ssh

Answers

 C. The command lshw -short outputs hardware information showing

hardware paths with a device tree.

 A. The dmidecode command lists the system’s BIOS while in multi-

user mode.

 B. The watch command will execute a program periodically, showing

output in full screen.

 D. The sar command collects, reports, and saves system activity

information, and the syntax is sar <interval count> .

 A, E. Both sar and vmstat monitor memory performance.

 A. The free command displays how much memory and swap space are

available on a computer.

 A. Modify the /proc/block/sda/queue/scheduler kernel

variable to either none , mq-deadline , kyber , or bfq to change

storage scheduling on drive /dev/sda .

 D. The ioping command will display disk drive latency performance

output.

 B, C. The sar and iostat commands are two commands that display

disk I/O rates.

 B. The command to close port 22 for SSH is firewall-cmd --

remove-service ssh or firewall-cmd --remove-

service=ssh .

CHAPTER 20
Installing and Configuring Linux

In this chapter, you will learn about

 Designing a Linux installation

 Installing Linux

 Configuring the X Window System

 Configuring locale settings

 Configuring time zone settings

 Configuring printing with CUPS

 Configuring e-mail

 Configuring SQL databases

 Configuring storage

The best way to make your dreams come true is to wake up.

—Mae Jemison, NASA

The CompTIA Linux+ certification exam objectives do not require

candidates to know how to perform a clean installation of a Linux

distribution or how to configure e-mail, printing, and databases. However,

in order for you to practice the Linux features discussed in this chapter, I

thought it important to explain how to set up and configure a Linux system.

The CompTIA Linux+ exam covers the most common Linux distributions,

but this chapter only instructs on how to install CentOS. I chose CentOS

because it is similar to the version of Linux installed by most U.S.

employers—Red Hat Enterprise Linux. The Debian and OpenSUSE

installation process is similar to installing CentOS as well.

Linux has become dramatically easier to install in the last 20 years. The

distributions available in the mid-1990s were challenging to install, and

hardware support was limited. Fortunately, modern Linux distributions

employ an easy-to-use graphical installation wizard to facilitate the

installation process. To install Linux properly, spend some time planning

the installation before starting the installation process.

NOTE Although there are hundreds of Linux distributions listed at

https://distrowatch.com, this discussion focuses on Linux distributions

tested on the CompTIA Linux+ exam.

https://distrowatch.com/

Designing a Linux Installation

When organizations deploy systems for their production environments,

proper planning is critical. Mistakes will lead to system outages, and

outages cost organizations time and money.

For example, suppose a major networking software vendor wanted to

implement a new application that would make its employees’ jobs easier.

When reviewing the system requirements, the design and installation team

found that the application required a specific version of the Windows server

software—one not currently owned. Implementing the application would

first require a new server be installed. Rather than develop a plan for the

new server deployment, the design and installation team moved forward

without a plan. They ordered a new server and set up the software without

communicating with the employees.

In the end, all the employees’ critical data was saved on this server.

Thousands of human hours representing millions of dollars were never

backed up. Good communications and change management would ensure

this does not happen.

In this part of the chapter, we discuss how to go about planning a Linux

installation. The following topics are addressed:

 Conducting a needs assessment

 Selecting a distribution

 Checking hardware compatibility

 Verifying system requirements

 Planning the filesystem

 Selecting software packages

 Identifying user accounts

 Gathering network information

 Selecting an installation source

The first step in any deployment plan is to conduct a needs assessment.

Let’s discuss this topic next.

Conducting a Needs Assessment

Conducting a needs assessment is one of the most important aspects of

creating a Linux deployment plan. This is the process of determining why

the Linux deployment is being undertaken, what outcomes are expected,

and when it is expected to be complete. Completing a needs assessment

requires you to remove your technician hat and put on the project manager

hat. In this role, you need to meet with different individuals and understand

their needs. This needs assessment should contain the following

information (at a minimum):

 What are the goals of the project? What problem will this installation fix?

What will be the final result of the implementation?

 Who are the stakeholders in this project? As a part of your needs

assessment, identify all individuals who will be impacted by the project.

 When is the system needed? A key question to ask is, when should the

project be completed? Begin with the “end in mind.”

Once you have answers to these questions, do a reality check against the

schedule. Remember that what looks good on paper might not work in real

life.

With your project scope defined, move on to the next component in the

project plan—the Linux distribution.

Selecting a Distribution

As discussed, Linux is available in a wide variety of flavors called

distributions or distros. One of the key parts of the deployment plan is

specifying which distribution to use. Which distro is the best to use depends

on your preferences. Most of the U.S. federal government prefers Red Hat

Enterprise Linux (RHEL) or SUSE Linux Enterprise Server (SLES)

because they offer corporate support plans, and both provide Mandatory

Access Control (MAC). Ethical hackers prefer Kali with the Tor browser

because they provide the best auditing tools. Here are some guidelines to

use to select the right distribution.

Determine if the system will function as a workstation or server. Most

operating systems are designed to function as one or the other, but Linux

can function as either a workstation or a server. This is unique among

operating systems. IBM’s Red Hat provides Red Hat Enterprise Linux

distribution, designed to provide network services for medium to very large

organizations with heavy server utilization. Red Hat also provides

distributions designed specifically for use as desktops.

Oracle Linux is an enterprise-class operating system and is easily

converted to RHEL by purchasing Red Hat’s support plan. Oracle Linux is

open source and 100 percent binary compatible with RHEL for applications

and patches.

CentOS and Fedora are both open source versions of RHEL designed for

the casual user. It is not recommended to use Fedora or CentOS in an

organization’s production environment.

Likewise, EQT Partners sells multiple versions of SUSE Linux and

provides OpenSUSE for the open source community. Its distributions span

offerings for the cloud and even embedded systems.

There are also purpose-specific distributions to create Linux-based

appliances using standard PC hardware. For example, you can create a

powerful network firewall using distributions such as Untangle.

Before selecting a specific Linux distribution, evaluate whether the

corporate applications will run and are supported by the operating system.

Also, verify the distribution runs on the selected system hardware.

Checking Hardware Compatibility

Today, most vendors offer a Linux version of the drivers for their hardware.

In addition, most of the drivers for common PC hardware are now included

with the various Linux distributions, especially virtual machines. Linux

installs on various types of hardware. To validate hardware compatibility,

visit https://tldp.org/HOWTO/Hardware-HOWTO/ or consult the Linux

vendor’s system requirements for updated specifications.

Though rarely done, it is still a very good idea to check the distribution’s

website and verify that the system hardware is listed on the distribution’s

hardware compatibility list (HCL). Even though hardware support for

Linux has become much better in the last decade, there are still some

devices that are not supported. A good example is integrated wireless

network interfaces used in many notebook systems. Check the distribution’s

HCL to verify that the system’s devices are supported.

https://tldp.org/HOWTO/Hardware-HOWTO/

HCLs are usually available in two locations. First, Linux distributions

include a list of supported hardware in a text file on the installation DVD.

However, because it is a static document, it has not been updated since the

disc image was created. If a device in the computer was released at some

point after the disc image was created, the driver may be outdated.

Instead, use the HCL maintained on the distribution websites. This

version of the HCL contains the most current data on supported hardware.

For example, if you’re installing the openSUSE distribution, access its HCL

at https://en.opensuse.org/Portal:Hardware. Once there, search for the

system hardware and see if it is supported. In Figure 20-1, the openSUSE

HCL for wired network cards is displayed.

https://en.opensuse.org/Portal:Hardware

Figure 20-1 Using the openSUSE HCL

If you’re choosing a Red Hat distribution, check the HCL on Red Hat’s

website (https://access.redhat.com/articles/rhel-limits) to verify the system

hardware is supported.

NOTE Driver availability is one reason organizations prefer to use big-

name, well-supported Linux distributions when deploying in a production

environment. Linux system administrators must protect data and ensure

systems run at maximum efficiency. In production environments, it is

critical to use Linux-supported hardware.

In addition to checking the HCL, also check the distribution’s system

requirements.

Verifying System Requirements

When formulating the deployment plan, be sure to specify the hardware

needed by the distribution selected. A key aspect of the system

https://access.redhat.com/articles/rhel-limits

requirements is the computer’s CPU architecture. When downloading the

Linux distribution, be sure to select the architecture that matches the

system’s CPU.

Today, there are many hardware options available to system

administrators. There are still x86 and Alpha architectures, and the newer

64-bit x86 architecture. In addition, Intel produces the IA-64 architecture

used by its Core CPUs. Each of these architectures requires a different

version of Linux. In fact, many Linux distributions have even been ported

to run on the M2 chip architecture from Apple. Other distributions are

available for the Thinkpad T14s from IBM and Lenovo using Intel or AMD

Ryzen CPUs. There are now even versions of Linux that have been ported

to run on the Qualcomm Snapdragon architecture used by tablet devices and

smartphones.

Regardless of which distribution is chosen, make sure to download the

correct version for the system’s architecture. If you choose the wrong

version, the Linux installers will generate an error and cancel the

installation.

Planning the Filesystem

When planning a Linux implementation, include specifications for how the

filesystem will be created and maintained on the system’s hard disk drive.

With Linux, however, there are more choices. Administrators can

customize how the disk will be partitioned and what filesystem will be

used. In this part of the chapter, we will discuss the following:

 Choosing a filesystem

 Planning the partitions

Let’s begin by discussing filesystems.

Choosing a Filesystem

The drive is made up of multiple aluminum platters, each with two read-

write heads that are used to transfer data. When conducting disk I/O

operations, the operating system needs to know where data is stored, how to

access it, and where it is safe to write new information.

This is the job of the filesystem, which reliably stores data on the hard

drive and organizes it in such a way that it is easily accessible. Filesystem

choices include the following:

 ext3

 reiser

 ext4

 btrfs

 xfs

NOTE Admins can also use many other filesystems with Linux, such as

VFAT and NTFS filesystems. Don’t use ext2 , because it is a non-

journaling filesystem.

The best supported filesystems are reiser , ext4 , btrfs , and

xfs . These filesystems can handle larger file sizes of much greater than

2TB, and filesystem partition sizes on the order of exabytes. Also, they

manage system failures better because of journaling, being able to recover

from system crashes in minutes instead of days with ext2 .

Planning the Partitions

It is recommended to have at least two partitions (/ and swap), and it’s

best to define these during the initial installation of the system. Changing

disk partitions after system installation is possible, but it is somewhat

challenging and time consuming. Therefore, best practice is to plan the

partition layout before starting the installation process.

By default, Linux distributions propose multiple partitions during the

installation process (see Figure 20-2):

Images

Figure 20-2 Default Linux partitioning

 swap The appropriate size for the swap partition is larger than the

amount of installed RAM, because in the event of a system crash, the entire

RAM image will fit the swap partition. The kernel dump can later be

analyzed to determine why the system faulted.

 / The slash partition is mounted at the root directory (/) of the Linux

filesystem.

 /boot Files important to booting reside here, such as the kernel and the

initial RAM disk. Filesystem corruptions recover faster when this partition

resides on its own.

Images

CAUTION The /boot partition must be created within the first 1,024

cylinders of the hard disk. A partition size of 250MB is plenty. To be safe,

create this partition such that it begins with cylinder 0.

Using these recommended partitions will add stability to the system.

Selecting Software Packages

Linux includes a fairly extensive sampling of packages that administrators

can choose to install with the operating system. Most distributions require

multiple DVDs to store all the packages. OpenSUSE offers many different

packages, as shown in Figure 20-3.

Images

Figure 20-3 Installing software packages in openSUSE Linux

Another feature of graphical Linux installers is they automatically

manage dependencies, which are specific software packages that other

software packages need in order to run. Most Linux packages installed will

have many dependencies associated with them.

In the early days of Linux, administrators had to manually manage

dependencies and include them in the installation. This was a tough job

because of the layers of dependencies, as shown in Figure 20-4. The job

was even tougher when dealing with “circular” dependencies, where

package A depends on package B, but package B also depends on package

A!

Images

Figure 20-4 The never-ending chain of package dependencies

Today, the installers covered on the CompTIA Linux+ exam

automatically calculate package dependencies, include the necessary

dependent packages in the installation, and manage circular dependencies.

Identifying User Accounts

When you’re planning the installation, determine the user accounts needed

on the system. The installation utilities used by Linux distributions provide

the ability to create these accounts during the installation process. No

matter what distribution you use, you need to create the root user

account during the installation, along with one standard user account.

Part of the installation process requires passwords be provided for each

account. Make sure to use strong passphrases with at least 12 characters,

upper- and lowercase letters, special characters, and numbers. Also at this

stage of the installation, select which users have sudo rights.

Gathering Network Information

You need to gather the information necessary to connect to the network

before starting the installation and include it in the deployment plan. Here

are some key items to consider:

 Will the system have its networking configuration dynamically assigned or

will it need to be manually configured?

 What hostname will be assigned to the system?

 What is the name of the DNS domain the system will reside in?

 Will the system need a host firewall configured?

Selecting an Installation Source

Linux provides multiple installation options, including the following:

 Installing locally from an optical disc or thumb drive

 Installing remotely from a network server

 Completing a remote installation using Virtual Network Computing (VNC)

Installing Locally from an Optical Disc or Thumb Drive

One of the more common methods for installing Linux is locally from a set

of installation discs. Using this method, you simply insert the appropriate

disc into the system’s optical drive and boot the system from the disc.

Alternatively, you can upload the image to a thumb drive and install from

there.

Simply download the disc image(s) from the vendor’s website. For

example, to install Fedora, navigate to https://getfedora.org and select the

“Download Now” button for Fedora Workstation or Fedora Server. After

you choose server or workstation, select the Fedora Media Writer for your

hardware, and the Fedora image downloads automatically. Plug in a 16+

GB thumb drive, and Fedora Media Writer will take you through the steps

to create a bootable thumb drive.

To make a bootable optical disk, download the .iso file. These are

known as ISO images. Once the ISO image is downloaded, burn it to a

physical disc (or thumb drive) using Rufus, UNetbootin, or Universal USB

Installer.

Installing Remotely from a Network Server

Another option for installing Linux is from a network server. This will work

from installation sources using the SMB, NFS, HTTP, or FTP protocol. The

key advantage of using a network is the capability to install a large number

of systems at once.

NOTE Not all Linux distributions support a network-based installation.

To complete a network installation, copy the Linux installation files to a

https://getfedora.org/

directory on the server or mount a DVD for remote access. Then select the

protocol for network access.

Once the installation source server is set up, download a network boot

installation image. For example, to complete a network installation of

SUSE Linux, navigate to http://opensuse.org, hover over Leap, and choose

More Information > Install Leap > Download. In the page that is displayed,

you can select a network boot image for download. Burn this image to disc

and then boot the system from it. On the first installation screen, specify the

installation source, as shown in Figure 20-5.

Images

Figure 20-5 Selecting an installation source

Completing a Remote Installation Using VNC

VNC allows video output to be redirected from one system to another

system. Using the VNC protocol, you can start the installation on a target

system but then use a web browser or VNC client software on another

system to view the installation screens.

On many distributions, such as openSUSE, you can enter vnc=1 in the

Boot Options field, as shown in Figure 20-6.

http://opensuse.org/

Images

Figure 20-6 Configuring a VNC installation

After you start the installation, prompts provide you with various

network parameters needed to create a VNC connection. The installation

system loads, and the IP address to access the system is displayed. The

installation screens can be accessed remotely using either a web browser or

VNC client software. For example, if the assigned IP address is

192.168.1.126 in the initial VNC configuration screen, a browser could

access it by opening http://192.168.1.126:5801, as shown in Figure 20-7.

Using this VNC connection, you can complete the installation process from

the comfort of your home office.

Images

Figure 20-7 Completing the installation remotely in a browser

NOTE The VNC server can also be accessed using the vncviewer

utility. Alternatively, on Windows systems you can use VNC Viewer from

RealVNC.

http://192.168.1.126:5801/

For the deployment plan, you need to determine the installation method

and prepare the prerequisite systems if necessary. Once you have done so,

the Linux deployment plan is complete. Now the data necessary to

complete the installation is all gathered in an organized, efficient, and

measurable manner. File the deployment plan in a safe place once

installation is complete. This information can be an invaluable help for

other system administrators who may need to work on the systems at some

point.

Installing Linux

When you’re installing new systems, it is strongly recommended that you

set up an isolated lab environment and install them there. This will allow

you to collect a baseline and ensure that everything is working properly

before releasing the systems into production.

As mentioned at the beginning of this chapter, there are simply too many

different Linux distributions available to include them all on the CompTIA

Linux+ exam or in this chapter. This chapter reviews how to install a

CentOS workstation, and you practice installing a Linux system in Exercise

20-1.

Exercise 20-1: Installing a Linux System

In this exercise, we will first install the VirtualBox hypervisor and then

CentOS Linux as a virtual machine. To follow along with the examples in

the book, we will install CentOS 7 on top of VirtualBox 6.1.40.

Images

VIDEO Please watch the Exercise 20-1 video for a demonstration on how

to perform this task.

Complete the following steps:

 On your computer, open a web browser and navigate to

https://www.centos.org and select CentOS Linux > Download.

Select x86_64 and choose a mirror that is near you for best download

performance.

 Select CentOS-7-x86_64-Minimal-2009.iso.

After the download completes, continue to step 2.

 On your computer, open a web browser, navigate to

https://www.virtualbox.org, and select Downloads on the left.

Scroll down and select “VirtualBox older builds.”

 Select VirtualBox 6.1 and then download VirtualBox 6.1.40 and initiate the

installation.

https://www.centos.org/
https://www.virtualbox.org/

At the Welcome screen, click Next and then Next again at Custom Setup.

 Accept the defaults at the Options screen and click Yes for “Network

Interfaces.”

Click Install at the “Ready to Install” screen, and then wait a few minutes

for the software to install. If you’re asked whether to install an Oracle

device, choose Always Trust and then Install.

Start VirtualBox by clicking Finish.

 To install CentOS into the VirtualBox hypervisor, click New within

VirtualBox.

In the Name field, enter CentOS-1. The system should default to “Type:

Linux” and “Version: Red Hat (64-bit).” If all checks out, click Next.

he version under “Type: Linux” shows as Red Hat (32-bit), you must select

Cancel; then, shut down the host system, enter the host computer’s BIOS,

and enable virtualization.

 A memory size of 2048MB is fine. Click Next.

Select “Create a virtual hard disk now” and click Create.

 VDI is fine for the “Hard disk file type” setting. Click Next.

Choose “Dynamically allocated” and click Next.

Set the hard drive size to 1.8TB and click Create.

Click the down arrow next to Machine Tools and select Details. Then, click

Display a few lines down and change Video Memory from 16MB to

128MB. Click OK.

 Click the green Start button within VirtualBox.

Under “Select start-up disk,” click the yellow folder icon, and under

Downloads, select CentOS-7-x86_64-Minimal-2009 (or similar), and click

Open.

 Click Start.

After the CentOS 7 window appears, click the up arrow to select Install

CentOS 7 and press Enter ; otherwise, the system will default to “Test

this media.”

 A couple of notification windows will appear at the top as the installation

begins. Read the notices and then click the X to close them both.

Press the right Ctrl key and F to enter full-screen mode. Read the

notification box, choose not to show the message again, and click Switch.

 The system is ready to install CentOS at this point. Click the blue Continue

button in the lower-right area of the screen.

Read the notification, select “Do not show this message again,” and click

Capture.

 Click the Continue button again.

Click Date & Time if you need to change your time zone. Then click the

blue Done button in the upper-left corner.

 Click Network & Host Name. Enable Ethernet by switching the OFF button

to ON in the upper-right area of the screen. In the upper left, select the

Done button.

Click Installation Destination and then click Done.

Click Begin Installation.

 The installation will start. In the meantime, let’s set up the users.

Click Root Password and define a password for yourself. Click Done when

this is complete. (You may have to click Done twice.)

 Click Create User and create student1 with a password of

student1 .

Click the option “Make this user administrator.”

 Click Done twice.

 Once the installation completes, click Reboot.

 After the reboot process completes, log in as student1 .

Type the following command to install a graphical desktop:

sudo yum groupinstall "GNOME Desktop" "Graphical

Administration Tools"

 After you enter the password for student1, the installation will begin.

After a moment, enter y to install the software. Return in about 10 minutes.

 Enter y to install the keys. Return in about five minutes.

Type the following command to convert the default runlevel to

graphics :

sudo ln -sf /lib/systemd/system/runlevel5.target

\

/etc/systemd/system/default.target

(A simpler method is to use sudo systemctl set-default

graphical.target .)

Type sudo reboot to reboot.

 Log in as student1 to your new graphical desktop environment.

Shortly, you will be asked to set up the language, keyboard, location, and so

on. Select the appropriate options for you.

Feel free to watch the “Getting Started” videos or close the window by

clicking X in the upper-right corner.

 Move the mouse to the upper right, hover over the speaker or battery icon,

and click the “on/off” button in the applet. Select to install additional

software updates and then select Power Off.

Congratulations! You now have a running CentOS Linux system.

Installing other distributions, such as Debian, Ubuntu, Fedora, openSUSE,

and others, follows a very similar process. Feel free to install these as

additional virtual machines—as many as your hardware supports.

Regarding the VirtualBox hypervisor, practice with it a bit to maneuver

to and from the guest and host computers. The main tip is that pressing the

right Ctrl key will return you to the host machine. For the CentOS guest

to take over, simply click into it with the mouse or enable “Mouse Pointer

Integration” to switch systems by hovering the mouse pointer over them.

Images

EXAM TIP Remote desktop tools available to Linux include VNC,

XRDP, NX, and Spice.

Configuring the X Window System

Another great Linux topic to understand that is not part of the CompTIA

Linux+ exam objectives is the X Window System, commonly called X11,

or X for short. In practice, X configures itself pretty well as part of the

installation process, so this section just explains how X works. In this part

of the chapter, the following topics will be discussed:

 Configuring the X server

 Configuring the display manager

 Configuring accessibility

Configuring the X Server

Because the X server works directly with the video board and monitor,

configuring it is critical. Use the correct settings; otherwise, the monitor

could be damaged. Configuration can be done in two ways:

 By editing the X configuration file

 By using an X configuration utility

Let’s look at the X configuration file first.

Editing the X Configuration File

Just like everything else in Linux, the X configuration is stored in a text file

in the /etc directory.

NOTE A good friend of mine coined an appropriate axiom: “Everything

in Linux is a file.” All of your system and service configurations are stored

in files. You even access hardware devices through a file.

Configuration settings are saved in /etc/X11/xorg.conf . Here is

a portion of a sample xorg.conf file:

Images

NOTE Linux distributions that are based on systemd do not use the

xorg.conf configuration file. Instead, the X11 configuration is stored

in a series of configuration files located in /etc/X11/xorg.conf.d .

Notice in this example that xorg.conf is broken into sections that

begin with the Section "<Name>" directive and end with

EndSection .

Let’s look at commonly used sections in the xorg.conf file. First is

the "Files" section. This section tells the X server where to find the

files it needs to do its job, such as font files and input device files. Here is

an abbreviated example of a "Files" section:

Images

Next is the "InputDevice" section. This section configures the X

server with the input devices it should use. You can use multiple

"InputDevice" sections, such as one "InputDevice" section for

the keyboard and another one for the mouse. Examples follow:

Images

The next section is the "Modes" section. The configuration file may

have one or more of these sections. They define video modes the X server

may use. Here is an example:

Images

The next section is the "Screen" section, which binds the video

board to the monitor. Here is an example:

Images

Images

The last section we’re going to look at is "ServerLayout" . This

section binds together one or more "Screen" sections and one or more

"InputDevice" sections, as shown in the following example:

Images

NOTE Wayland is the newer, improved version of X11, currently the

default for Fedora Linux.

The DISPLAY variable

A keyboard, mouse, and monitor are defined as a DISPLAY . The first

DISPLAY is defined as :0.0 , in the form of :display.screen. For

example, if you are running three screens from one computer, the left screen

is defined as DISPLAY=:0.0 , the middle screen as DISPLAY=:0.1 ,

and the right screen as DISPLAY=:0.2 .

If three separate systems are networked together, each with their own

screen, keyboard, and mouse, the left screen is defined as

DISPLAY=:0.0 , the middle screen as DISPLAY=:1.0 , and the right

screen as DISPLAY=:2.0 because they are not sharing the keyboard and

mouse as in the first example.

Using an X Configuration Utility

As with most Linux services, the X server configuration can be modified

with a text editor such as vi . However, do not manually edit the file;

instead, use the configuration utility under Settings | Displays, as shown in

Figure 20-8. This applet allows you to configure screen resolution.

Images

Figure 20-8 The Displays applet

Enter Xorg -configure at the shell prompt to automatically detect

all the hardware and create a configuration file named

/root/xorg.conf.new . Then test the configuration before

committing it by entering X -config /root/xorg.conf.new at

the shell prompt. If everything looks correct, rename the file to

/etc/X11/xorg.conf to start using the new configuration.

NOTE Use the xwininfo command to display information about open

windows on your graphical desktop. The xdpyinfo command can be

used to display the capabilities of an X server.

Configuring the Display Manager

This section covers the following topics:

 Enabling and disabling the display manager

 Configuring the display manager

 Configuring remote access to the display manager

Enabling and Disabling the Display Manager

On many Linux distributions, the display manager is managed by the xdm

init script located in the /etc/init.d directory. Other distributions

may use the GNOME display manager (gdm) or the KDE display manager

(kdm). To manually manage the display manager, enter

/etc/init.d/<init_script> stop or start at the shell

prompt.

Images

EXAM TIP Graphical user interfaces (GUIs) available for Linux include

Gnome, Unity, Cinnamon, MATE, and KDE.

Configuring the Display Manager

Configure the display manager by editing the appropriate configuration file:

 xdm /etc/X11/xdm/xdm-config

 LightDM The LightDM display manager is configured using several

different files:

 /usr/share/lightdm/lightdm.conf.d

 /etc/lightdm/lightdm.conf.d

 /etc/lightdm/lightdm.conf

 kdm The KDE display manager is actually based on xdm and usually

uses the xdm configuration files. However, some distributions store your

kdm settings in /etc/kde/kdm or /etc/X11/ kdm instead. In this

situation, you will use the kdmrc file in either of these directories to make

most configuration changes.

 gdm /etc/X11/gdm

Configuring Remote Access to the Display Manager

Many organizations use thin-client systems for their end users. This

implementation allows an organization to provide a full graphical desktop

to all its users using a larger number of inexpensive thin clients.

To configure remote access to listen on the network for inbound

connection requests from the X server software on the thin clients, run the

xhost + command on the X server.

The thin clients simply need to telnet to the X server, enter their

login and password, and run any X client. The X client will display to the

thin clients.

NOTE Secure console redirection can be enabled via X11 with ssh -X ,

and running ssh -L can further enhance security with port forwarding.

Configuring Accessibility

To support a diverse workforce, administrators must learn to configure

accessibility settings for physically, hearing, and visually impaired users. A

few tools covered in this chapter include the following:

 Keyboard accessibility

 Mouse accessibility

 Screen readers

To access assistive technologies, search for and select Universal Access.

The screen in Figure 20-9 is displayed.

Images

Figure 20-9 Enabling Assistive Technologies

Keyboard Accessibility

Universal Access allows you to configure the following:

 StickyKeys Allows users to lock keys such as Ctrl and Shift to

complete keyboard tasks with just one finger that would normally require

two or more fingers.

 SlowKeys This helps the user avoid sending accidental keystrokes.

 BounceKeys and DelayKeys Inserts a slight delay between keystrokes to

prevent the keyboard from sending unintentional keystrokes.

For physically impaired users who are not able to use a traditional

keyboard, Linux provides the option of using an onscreen keyboard, which

allows users to use a mouse to select keys on a virtual keyboard. Commonly

used onscreen keyboard applications include GOK (GNOME Onscreen

Keyboard) and GTkeyboard.

Mouse Accessibility

In addition to keyboard accessibility, Assistive Technologies also provides

mouse accessibility options for physically impaired users. For example, one

can configure mouse options under Pointing and Clicking in the Universal

Access panel. One such option is Simulated Secondary Click, which sends a

double-click after holding the primary button down for a few seconds.

Screen Readers

One option available to visually impaired users is a screen reader, which

“reads” the text displayed on the screen audibly for the user. The Orca

application is probably the most commonly used screen reader. The other

major screen reader is emacspeak .

Other accessibility utilities include screen magnifiers, braille devices,

and high-contrast desktop themes.

Configuring Locale Settings

Administrators typically configure a system’s locale during the installation

process. They can also specify an encoding in the locale. For example, use

en_US.UTF-8 to configure a default locale, or LC_ , of U.S. English

using UTF-8 character encoding (also known as Unicode encoding).

Not all of the LC_ variables have the same level of precedence. Linux

uses the following rules:

 If the LC_ALL variable is defined, its value is used and the values

assigned to all other LC_ variables are not checked.

 If LC_ALL is undefined, the specific LC_ variable in question is

checked. If the specific LC_ variable has a value, it is used.

 If the LC_ variable in question has a null value, the LANG environment

variable is used.

To define all of the LC_ variables to use the same value, set the

LC_ALL variable.

NOTE Most distributions set the value of LC_CTYPE to define the

default encoding and the value of LANG to provide a default value to all

other LC_ variables.

To view the current locale settings, enter the /usr/bin/localectl

or /usr/bin/locale command at the shell prompt. Here is an

example:

Images

In this example, only the LANG and LC_CTYPE variables are actually

defined. The other LC_ variables are automatically populated with the

value assigned to LANG .

Use the -a option with locale to generate a list of all available

locales. Use the -m option with locale to view a list of available

encodings. An example follows:

Images

Be aware that changing encodings may result in issues viewing other

files created using a different encoding. To convert from using one

encoding to a new one, use the iconv command at the shell prompt. The

syntax is as follows:

Images

NOTE Commonly used text encodings include iso8859 (also called Latin-

9 encoding), which is designed for Western European languages; ASCII,

which uses an English-based character-encoding scheme; and Unicode,

which is designed to handle character sets from languages around the

world.

Configuring Time Zone Settings

During the initial installation of your Linux system, you are prompted to

specify the time zone the system is located in. To view the current time

zone, enter timedatectl or date at the shell prompt, like so:

Images

To change time zones on a Debian system, change the value of the

/etc/timezone file. For other systems, modify the value of the TZ

environment variable and then export it. This is useful in situations where

you do not have the root password, or if you want to use a different time

zone without changing the time zone used by other users. The syntax is

export TZ=<time_zone> . A list of available time zones can be

found in the /usr/share/zoneinfo/ directory, as shown here:

Images

This change is not persistent. Upon reboot, the system returns to the

default time zone. To make the time zone persistent, add something similar

to the following example to the ~<username>/.profile file:

Images

You can also change time zones by linking the /etc/localtime file

with a zone file under /usr/share/zoneinfo . For example, to

switch to the Mountain Standard Time zone, enter the following:

Images

Configuring Printing with CUPS

No matter what operating system you’re using, one of the most important

services it offers is the ability to send print jobs to a printer. Because of this,

you need to be very familiar with Linux printing, even though it is not a

requirement for the CompTIA Linux+ exam objectives. In this section, we

cover the following topics related to printing in Linux:

 Configuring CUPS

 Using the Line Printer Daemon (lpd)

Let’s begin by discussing how Linux printing works.

Configuring CUPS

All CUPS printers are defined in the /etc/cups/printers.conf

file. Although you can manually edit this file, you really should use the

CUPS web-based administration utility instead. You can either configure

CUPS to service a locally attached printer (and optionally make it available

to other network users) or connect to a CUPS printer over the network. For

example, to configure CUPS to use a locally attached printer, do the

following:

 On your Linux system, start a web browser and navigate to

http://localhost:631.

 Select Administration.

 Under Printers, select Add Printer.

 When prompted, log in as the administrative user you created previously.

 Select a locally attached printer type under Local Printers and then select

Continue.

Images

TIP You could also select a network printer on this screen. All

broadcasting CUPS printers on other network hosts are listed under

http://localhost:631/

Discovered Network Printers. To send print jobs to one of these printers,

just select it.

 In the Name field, enter a name for the printer.

 In the Description field, enter a description of the printer.

 In the Location field, enter a location for the printer.

 If you want to share the printer with other network users, mark Share This

Printer.

 Select Continue.

 Select the printer manufacturer; then select Continue.

 In the Model field, select your printer model; then select Add Printer.

 Configure your default options for the printer, such as paper size, color

model, media source, print quality, two-sided printing, and so on. When

complete, select Set Default Options.

At this point, a page is displayed indicating your printer has been added.

The current status of your printer is displayed.

From the Printer Status page, you can manage your CUPS printer. You

can send a test page, stop the printer, kill a print job, modify the printer

configuration, or delete the printer altogether.

At this point, you can send print jobs to the printer. If you’re using a

graphical X application, you can simply select File > Print, and then select

the printer and click OK. You can also send print jobs from the command

line to the printer. This is done using the lp command, which will send a

specified file to the printer. The syntax is lp -d <printer_name>

<filename> . For example, if I wanted to print the myfiles file in the

current directory to the HPLJ2 printer I just created, I would enter lp -

d HPLJ2 ./myfiles at the shell prompt, as shown here:

Images

As you can see in this example, the job is created and assigned an ID (in

this case, HPLJ2-2). The job is added to the print queue and sent to the

printer. The lp utility includes a variety of options besides -d that you

can use to create print jobs, including the following:

 -n x Prints x number of copies

 -m E-mails a confirmation message to the user’s local user account when

the job is finished printing

 -q x Sets the priority of the print job to x

 -o landscape Prints the file in landscape orientation instead of

portrait

 -o sides=2 Prints the file double-sided on a printer that supports

duplexing

You can also configure other Linux systems to print to the CUPS printer.

Simply configure a new printer, but specify that it listen for CUPS

announcements. The CUPS printer you configured should be displayed

within 30 seconds. After you select it, all print jobs sent to that printer will

be redirected over the network connection to your CUPS printer.

In addition, if you’ve installed Samba on your system, your CUPS

printers are automatically shared. You can connect to them from Windows

workstations and submit print jobs. Now that’s cool!

In addition to the CUPS web-based administration utility, you can also

use a variety of command-line tools to configure CUPS. To view CUPS

printer information, you can use the lpstat utility. One of the most

useful options you can use with lpstat is -t . This will cause

lpstat to display all information about all CUPS printers on the system,

as this next example shows:

Images

This shows the default CUPS printer (HPLJ2), how it’s connected

(/dev/lp0), the print job currently being processed (if any), and a list of

pending print jobs.

To cancel a pending print job, you can use the cancel command. The

syntax is cancel <job_ID> . For example, suppose I sent a huge print

job (a Linux user manual from /usr/share/doc/manual/) and it

was assigned a print ID of HPLJ2-4 . While printing, I decided that this

was a real waste of paper. I could kill the job and remove it from the print

queue by entering cancel HPLJ2-4 at the shell prompt. This can also

be done from within the CUPS web-based administration utility. Just go to

the Jobs tab and select Show Active Jobs. Locate the job that needs to be

canceled and select Cancel Job.

If you have more than one CUPS printer connected, you can use the

lpoptions -d <printer> command to specify the default printer.

For example, to set the HPLJ5 printer as the default, I would enter

lpoptions -d HPLJ5 . This sets the default printer for all users on the

system. Individual users can override this setting, however, by creating a

file named .lpoptions in their home directory and adding the

following directive:

Images

If you want to view your printer’s configuration settings, you can enter

lpoptions -l at the shell prompt.

In addition to the lpoptions command, you can also use the

cupsaccept <printer_name> or cupsreject

<printer_name> command to enable or disable a printer’s print queue.

For example, I could enter cupsreject HPLJ2 at the shell prompt to

disable the printer’s print queue, as shown in this example:

Images

The printer itself will continue processing queued print jobs, but

cupsd will not allow any new jobs to enter the queue. The

cupsdisable command also includes the –hold option, which stops

printing after the current job is complete. To enable the queue again, I

would enter cupsaccept HPLJ2 at the shell prompt.

To disable the printer itself, not the queue, I could enter cupsdisable

HPLJ2 at the shell prompt, as this example shows:

Images

The print queue will continue to accept jobs, but none of them will be

printed until I enter cupsenable HPLJ2 at the shell prompt. The

cupsenable command also includes the --release option to

release pending jobs for printing.

By far, CUPS is the preferred printing system for modern Linux

distributions. Years ago, the preferred printing system was the Line Printer

Daemon (lpd). Most of the lpd commands have functionality similar to

that offered by CUPS, as shown in Table 20-1.

Images

Table 20-1 lpd Commands

As an interesting side note, these commands will also work with

cupsd . For example, enter lpc status at the shell prompt and it will

return the status of the CUPS printers.

Configuring E-mail

Although configuring e-mail is an important task as a Linux administrator,

it is not a requirement for the CompTIA Linux+ exam objectives. Let’s first

look at reading messages stored in your local mail transfer agent (MTA).

When you log in to a shell session, you will receive a notification if there

are mail messages waiting for you. You can read messages for local users

from the local MTA directly from the command line using the mail

command at the shell prompt. When you do, a list of messages is displayed.

NOTE Some services running on Linux are configured to send

notification messages to the root user.

These messages are stored in the user’s mail queue, which is located in

/var/spool/mail/ . The mail utility reads a user’s messages from the

user’s queue file. Because the mail utility is on the same system where the

queue resides, there is no need to configure POP3 or IMAP support. Enter

the mail commands shown in Table 20-2 at the ? prompt.

Images

Table 20-2 Mail Commands

To send a message, enter mail <recipient_address> at the

shell prompt. Then enter a subject line and the text of the message. Press

Ctrl-D when done to actually send the message. Once done, the message

is delivered to the other user’s mail queue by the local MTA.

To view a list of unread messages in your mail queue, you can enter

mailq at the shell prompt.

You can also configure aliases for the MTA running on a Linux system.

Mail aliases redirect mail addressed to one user to another user’s account.

Use the /etc/aliases file to configure aliases. This file defines one

alias per line. The alias you define must point to an existing e-mail address.

The syntax for this file follows:

Images

For example, the following two aliases must be present in this file on

most Linux distributions:

Images

These aliases cause any e-mail messages sent to the postmaster to be

automatically redirected to the root user. Likewise, any e-mail messages

sent to mailer-daemon will be redirected to postmaster (which will

then be redirected to root). Depending on your distribution, you will

probably find that many aliases are defined for you by default. Here is an

example:

Images

Of course, you can enter your own custom aliases if needed. Just open

the /etc/aliases file in a text editor and add the appropriate aliases,

one per line. When done configuring aliases, you must run the

newaliases command at the shell prompt as root to enable them.

Also use the ~/.forward file to configure forwarding. Linux MTAs

check for the existence of this file to configure forwarding of messages.

Now e-mail will automatically be forwarded to the e-mail address in this

file. To stop forwarding, delete this file.

NOTE The MTA will treat the addresses you enter in this file as an alias.

This causes all e-mail to be forwarded to the forwarding e-mail address.

Messages will not be delivered to the original user’s mailbox.

Configuring SQL Databases

Another great Linux topic to understand that’s not included in the

CompTIA Linux+ exam objectives is how to configure SQL databases. A

database is a collection of information organized so that data can be quickly

selected and retrieved based on a search query created.

Database services run on a client/server model. Two database services

are commonly implemented on Linux:

 MySQL

 PostgreSQL

By installing one of these database services, you install the software

needed to run, operate, and manage the database using SQL (Structured

Query Language), which is a standard language for accessing and

manipulating databases.

Both of these database services are relational databases, which are

hierarchical in nature. Relational databases are specialized to organize and

store huge amounts of data. They are also designed to be highly scalable,

allowing them to grow over time.

A relational database is organized using fields, records, and tables. A

field is a single piece of information. A record is one complete set of fields,

and a table is a collection of records. Each table is identified by a name,

such as Customers. Each table contains records (each one a single row) that

contain one or more fields, which in turn contain the actual database data.

For example, suppose you defined a table called Customers and created the

following three records:

Images

Using the SQL language, you could create queries that select and

retrieve specific data from the database. For example, suppose you were to

compose the following query:

Images

The database would return the following data:

Images

You can use the following commands to manage data in an SQL

database:

 SELECT Retrieves information from a table

 UPDATE Modifies information in a table

 DELETE Removes information from a table

 INSERT INTO Adds new data to a table

 CREATE TABLE Creates a new table

 ALTER TABLE Modifies an existing table

 DROP TABLE Deletes an existing table

A key feature of relational databases is the fact that you can create

relationships between tables, which allows you to create interrelated data

sets.

In order to manage data on the MySQL server, you must connect to it

using some type of SQL client. You can choose from a plethora of different

clients. If you can manipulate SQL Server data with this utility, all the other

clients will be a piece of cake for you to use.

The command-line MySQL client is run by entering mysql at the shell

prompt. The syntax is mysql -h <hostname> -u <username> -

p . For example, to connect to the MySQL service running on the local

Linux system as root , you would enter the following command:

Images

Configuring Storage

This section contains details on storage that are interesting to learn but are

not requirements of the CompTIA Linux+ exam objectives. The following

topics are discussed:

 GUID Partition Table (GPT) components

 Integrated Drive Electronics (IDE) drives

 Locating a device

GUID Partition Table Components

Let’s look at the various sections of a disk device using GPT partitioning

(see Figure 20-10).

Images

Figure 20-10 GUID Partition Table

Protective MBR (LBA 0)

The protective MBR is used to prevent MBR disk utilities from writing

over the GPT partition. The MBR’s bootloader is used so BIOS-based

systems can benefit from GPT. GPT’s MBR is modified to recognize GPT

partitions.

GPT Header (LBA 1)

The GPT header contains information regarding the structure of the

partition table.

Partition Table Entries (LBA 2 to 33)

This section contains partition table entries for up to 128 logical partitions.

Table 20-3 illustrates the information stored for each partition.

Images

Table 20-3 Partition Table Entries

Partitions (LBA 34 to −34) This section defines user-defined partitions.

Secondary (Backup) Partition Table Entries (LBA −33 to −2)

This is a backup to the partition table entries found in LBA 2 to 33.

Secondary (Backup) GPT Header (LBA 1)

This is a backup to the header entry found in LBA 1.

IDE Drives

An IDE interface does not contain device controllers. The controller for an

IDE drive is built into the disk device. The interface consists of a primary

and a secondary channel (see Table 20-4). Each channel supports two disk

devices (primary and secondary). Within a specific channel, the primary

device controls communications on the channel.

Images

Table 20-4 IDE Drive Nomenclature

The /dev/hda is the name of the disk device attached to the IDE

primary channel and is the primary disk device on the channel.

Locating a Device

When the system boots, it classifies a device, provides it a device name, and

stores the device specifications. Next the operating system must provide a

means of accessing a device. Let’s take a brief look at that process.

Major and Minor Numbers

On boot, the Linux kernel detects and initializes devices by scanning each

system bus. When the kernel discovers a device, it determines the device

class and assigns the device a major and a minor number. The device class

is used to look up the driver for the device. The Linux Assigned Name and

Number Authority (LANANA) maintains a list of device classes.

Once the device class is determined, the kernel creates a device directory

in /sys and stores the properties of the device in that directory. After

boot, the kernel continuously scans system buses for device additions,

changes, or removals.

NOTE / sys is the mount point for the sysfs pseudo-filesystem.

sysfs provides device information to applications running in the

system’s user space.

Notice the output in Figure 20-11. Where the file size should be, you see

two numbers (for example, 8, 0). The first number is the major number,

and the second number is the minor number. Using this information, you

can see when you access device sdb1 (Figure 20-11, line 6). The minor

number of a disk device informs the device driver which logical device to

communicate with.

Images

Figure 20-11 Major and minor numbers

The total number of partitions on a disk device is dependent on the drive

type. IDE devices may have up to 63 partitions; SCSI devices may have up

to 15 partitions.

Minor numbers for a device class are sequential. The first minor number

of a SCSI disk device represents the entire drive. Minor numbers 0–15

are reserved for device sda , and the first minor number for device sdb

is 16 .

sdb ’s range of minor numbers is 16–31 . The first minor number of

the sequence, 16 , is the logical unit number for the entire device (sdb).

The second minor number (17) is the logical unit number for the first

partition, or sdb1 .

Device Tree Management with udev

It is possible that devices scanned during one boot process are not scanned

in the same order in another boot process. Minor numbers influence the

device name and are allocated sequentially, so this would cause a device’s

name to change. Although this does not affect the kernel’s ability to access

a device, an application trying to access a device by name would have a

problem. This problem is solved by creating a path to a device in the

systems device tree (/dev).

NOTE /dev/disk/by-partlabel and / dev/disk/by-

partuuid are provided in addition to /dev/disk/by-id ,

/dev/disk/by-uuid , and /dev/disk/by-path as methods of

accessing a disk device.

When the kernel discovers the addition, modification, or removal of a

device on a system bus, it generates a uevent . The uevent informs

udev of the addition, removal, or change. udev uses the class of the

device, information stored in / sys , and udev rules to create, remove, or

modify the system device tree, /dev .

udev rules define how a specific device may be added or deleted and

any actions that should occur before or after the device is added, modified,

or removed. This makes device configuration persistent.

udev rules are found in /lib/udev/rules.d or

/etc/udev/rules.d . The rules found in /lib/udev/rules.d

are system defaults, and those found in /etc/udev/rules.d are

custom rules. Rules in /etc/udev/rules.d override the rules in

/lib/udev/rules.d .

When enumerating a disk device, udev will create an entry in the

following files: /dev/disk/by-path , /dev/disk/by-id ,

/dev/disk/by-uuid , /dev/disk/by-partlabel (uefi) ,

and /dev/disk/by-partuuid (uefi) .

/dev/disk/by-path The entries in /dev/disk/by-path ,

shown in Figure 20-12, provide a symbolic link between the physical path

to the device and device name.

Images

Figure 20-12 /dev/disk/by-path

The path to a device is notated as host:bus:target:lun and

detailed in Table 20-5.

Images

Table 20-5 Device Path Notation

/dev/disk/by-id Each SCSI device is assigned a unique identifier

called a World Wide Identifier (WWID) when the device is manufactured.

The / dev/disk/by-id directory provides a symbolic link between the

WWID of the device and the device name (see Figure 20-13). This allows

applications to access a device even if the device path has changed.

Images

Figure 20-13 /dev/disk/by-id mappings to disk drives

The serial numbers in Figure 20-13 were created by VirtualBox.

/dev/disk/by-uuid A universally unique identifier (UUID) is a

unique identification number applied to filesystem and system devices. A

UUID number is assigned to each filesystem when it is created.

NOTE UUID numbers may also be applied to system devices such as

network cards.

In Figure 20-14, you can see that /dev/disk/by-uuid contains

symbolic links between a filesystem’s UUID and the device name.

Images

Figure 20-14 dev/disk/by/uuid mappings to storage media

NOTE dm-0 and dm-1 in Figure 20-14 are LVM logical volumes. dm

refers to device mapper.

/dev/disk/by-partlabel This file is only found using GPT

partitioning. This directory contains files that are a symbolic link between

the device partition label and the device.

/dev/disk/by-partuuid This file is only found using GPT

partitioning. Each partition is assigned a UUID . This directory contains

files that are a symbolic link between the partition’s UUID and the device.

/dev/mapper /dev/mapper is a method of dividing a physical

block device into virtual block devices. The commands ls -lha

/dev/mapper and dmsetup ls will display a list of logical volume

devices.

Recommended Swap Space Sizing

Each distribution may have its own swap space allocation suggestions.

Table 20-6 is Red Hat’s suggested swap space for systems that do not

hibernate.

Images

Table 20-6 Suggested Swap Space

Based on the distribution’s recommendations, it may be more efficient to

divide swap space across multiple drives and set swap priorities so swap

partitions act as a RAID stripe.

Restore a Damaged Superblock

One very useful feature of e2fsck is its ability to restore a damaged

superblock on ext2/3/4 filesystems. The superblock is the block at the

beginning of the partition that contains information about the structure of

the filesystem. Also, most Linux filesystems keep backup copies of the

superblock at various locations in the partition.

If the superblock gets corrupted, you can restore it using one of these

backup copies. The syntax is e2fsck -f -b backup_superblock

device . The -f option tells e2fsck to force a check, even if the

filesystem seems to be clean. The -b option tells e2fsck which copy of

the superblock it should use.

If you cannot remember the location of the backup superblocks, execute

the command mkfs -n <device> .

Kick Off Users from a Busy Filesystem

Sometimes users can get in the way of a proper shutdown. If users will not

log out when the certified technician arrives to repair hardware, force them

to log out using the fuser command.

Run either of the commands fuser -k /<filesystem_name>

or fuser -k -9 /<filesystem_name> . For users that are in their

home directory, run fuser -k /home . This will kill all of the user’s

jobs so that you can conduct a graceful shutdown. Warning: this can harm

user data.

Chapter Review

This chapter covered Linux topics that are not part of the CompTIA Linux+

exam objectives but can be helpful to you as an administrator to set up

servers and workstations. You learned how to perform a Linux installation

and how to set up a graphical environment for users.

Next you learned how to configure a Linux system to connect and send

print jobs to a printer, send and receive e-mails, and access storage devices

like hard drives and thumb drives.

Some key points from this chapter include the following:

 If seeking employment in the United States, the most widely used

enterprise-class version of Linux used is Red Hat Enterprise Linux, with

SUSE Linux Enterprise Server being next.

 Linux installations support configurations for servers and workstations.

 The X Window and Wayland display variable is DISPLAY .

 Linux provides accessibility tools for users with physical impairments.

 To add a printer, use the Settings tool provided by the Linux vendor or visit

the website http://localhost:631 to set up a CUPS printer.

 Linux can be set up as an e-mail server or e-mail client.

 Linux can be set up as an SQL server using mysql , postgresql , and

others.

 Storage can be set up for hard drives, thumb drives, or SD cards.

Questions

 When conducting a needs assessment prior to a Linux installation, what

questions should you ask? (Choose two.)

 What problem will this installation fix?

Which distribution should I use?

 Where can I get the best price on a new server?

 Who will be using the new system?

 Which of the following is a properly stated goal in a needs assessment?

 Mike’s boss wants a new server, so we’re going to install it.

http://localhost:631/

We’re going to install Linux on everyone’s desktop.

 We need a new Linux server.

 The new Linux system will provide a network database to increase the

documentation team’s productivity by an anticipated 20 percent.

 Suppose Karen from customer service approaches you and asks for a new

Linux server for her team. Who else should you talk to as a part of your

needs assessment? (Choose two.)

 Karen’s boss

Karen’s coworkers

 The technical support supervisor

 Your hardware vendor

 You’re responsible for implementing five new Linux servers in your

organization’s technical support department. The technical support

supervisor has asked that four additional servers be added to the project.

Due to time constraints, the supervisor won’t allow you to adjust the

original schedule. Which of the following is the most appropriate response?

 Ignore the request.

Inform the supervisor that additional resources will have to be added to the

project.

 Resign in protest.

 Cheerfully agree to the request and then miss the deadline.

 You’re installing new Linux systems that will be used by software engineers

to develop advanced computer-aided design applications. Which

distributions would be the best choices for this deployment? (Choose two.)

 Red Hat Enterprise Linux

Red Hat Enterprise Desktop

 Red Hat Enterprise Linux Workstation

 SUSE Linux Enterprise Server

SUSE Linux Enterprise Desktop

 You’re installing a new Linux system that will be used by an administrative

assistant to type documents, create presentations, and manage e-mail.

Which distributions would be the best choices for this deployment?

(Choose two.)

 Red Hat Enterprise Linux

Red Hat Enterprise Desktop

 Red Hat Enterprise Linux Workstation

 SUSE Linux Enterprise Server

SUSE Linux Enterprise Desktop

 You’re installing a new Linux server that will be used to host mission-

critical database applications. This server will be heavily utilized by a large

number of users every day. Which distributions would be the best choices

for this deployment? (Choose two.)

 Red Hat Enterprise Linux

Red Hat Client

 Red Hat Enterprise Linux Workstation

 SUSE Linux Enterprise Server

SUSE Linux Enterprise Desktop

 You’re planning to install Linux on a system that you’ve built out of spare

parts. Several components in the system aren’t listed on your distribution’s

HCL. This system will be used by your team’s administrative assistant to

manage employee schedules, send and receive e-mail, and track employee

hours. What should you do?

 Install the distribution anyway and hope for the best.

Install the distribution and then install the latest product updates.

 Replace the incompatible parts with supported hardware.

 Spend three days scouring the Internet looking for drivers.

 You’re planning to install Fedora on a system that uses a 32-bit CPU.

Which distribution architecture should you download?

 IA-64

x86-Celeron

 x86-64

 x86

 You’re planning to install Fedora on a system that uses a 64-bit AMD

multicore CPU. Which distribution architecture should you download?

 IA-64

x86-AMD

 x86-64

 x86

 You’re installing a new Linux system. This system will be used by a civil

engineer to model the behavior of buildings and bridges during an

earthquake. This system must run as fast as possible. It must protect the

integrity of the data if the system goes down unexpectedly. If it does go

down, the system needs to be backed up and running as quickly as possible.

Which filesystem would be the best choice?

 VFAT

FAT32

 ext4

 ext3

 Which partition is used for virtual memory by a Linux system?

 pagefile

swap

 /swap

 /boot

 If your system has 1GB of RAM installed, how big should your swap

partition be?

 256MB

1GB

 512GB

 Depends on what the system will be used for

 Which of the following directories should have their own partition?

(Choose three.)

 /bin

/boot

 /etc

 /usr

/home

/root

 /dev

 You’re installing a new Linux server. This system will function as an e-mail

server for your organization. What ports should you open on its host

firewall? (Choose three.)

 110

80

 25

 143

443

 You need to install Linux on a workstation. The hard drive has been wiped

and is ready for the new operating system. You insert your Linux

installation DVD in the optical drive and boot the system. Instead of the

installation routine starting, the screen displays an error message indicating

that an operating system couldn’t be found. What’s the most likely cause of

the problem?

 Your Linux DVD is damaged.

The hard drive is failing and needs to be replaced.

 The DVD drive is malfunctioning.

 The boot device order is set incorrectly in the BIOS.

 Your Linux system uses two SATA hard disk drives. Which of the following

refers to the second SATA drive in the system?

 /dev/sda

/dev/sdc

 /dev/sdb

 /dev/sdd

 Your Linux system uses a single SATA hard disk drive. Which of the

following refers to the first partition on the drive?

 /dev/sda1

/dev/sdb1

 /dev/sda2

 /dev/pdb2

 Your Linux system uses a single SATA hard disk drive. Which of the

following refers to the second partition on the drive?

 /dev/sda1

/dev/hdb1

 /dev/sda2

 /dev/hdb2

 Your Linux system uses two SCSI hard disk drives. The first drive is

assigned SCSI ID 0; the second drive is assigned SCSI ID 1. Which of the

following refers to the first partition on the second SCSI drive in the

system?

 /dev/sda1

/dev/sdc1

 /dev/sdb1

 /dev/sdd1

 Which locale environment variable configures your default character

encoding?

 LC_NUMERIC

LC_CTYPE

 LC_MEASUREMENT

 LC_CHAR

 Which locale value specifies French Canadian using Unicode encoding?

 en_US.UTF-8

fr_CA.UTF-8

 fr_CA.ASCII

 en_CA.ASCII

 Which locale variable overrides all other locale variables?

 LC_ALL

LANG

 LANGUAGE

 LC_CTYPE–-d MIN2300W –-n 2

/home/tux/employees.txtlp –-d MIN2300W

/home/tux/employees.txt–-d MIN2300Wlp default =

MIN2300Wlpoptions

 Which CUPS component handles IPP printing requests from CUPS clients?

 CUPS Scheduler

PDLs

 CUPS Backends

 PPDs

 Your Linux system has an IP address of 192.168.1.20. What URL should

you use in a browser to access the CUPS web-based administration utility?

 http://192.168.1.20

https://192.168.1.20

 http://192.168.1.20:631

 http://192.168.1.20/cups

 Which directive in the /etc/cups/cupsd.conf file specifies whether

or not cupsd will announce its printers using broadcasts on the network?

 BrowseAddress

BrowseAllow

 Broadcast

 Browsing

 Which command can be used to set the hardware clock on a Linux system

to the system time?

 hwclock -w

hwclock -s

 hwclock -set

 hwclock -r

 Which IP port does the NTP daemon use to synchronize time?

 636

80

 443

 123

Answers

 A, D. You should determine why the new Linux installation is needed and

who will be using it.

 D. This response clearly states the goal of the project and is measurable.

 A, B. Karen’s boss and her coworkers are key stakeholders in the project.

 B. The best response to this situation is to have a frank discussion with the

technical support supervisor and point out the consequences of the decision.

Either the scale will have to be reduced or more resources must be added to

the project to complete it in the same time frame.

 C, E. Technically, any Linux distribution could be used in this role.

However, RHEL Workstation and SUSE Linux Enterprise Desktop are

specifically optimized for these kinds of tasks.

 B, E. Red Hat Enterprise Desktop and SUSE Linux Enterprise Desktop are

optimized for basic workstation tasks such as word processing.

 A, D. Red Hat Enterprise Linux and SUSE Linux Enterprise Server are

designed for high-demand network servers.

 C. The best approach is to use supported hardware.

 D. A 32-bit CPU uses the x86 architecture.

 C. The 64-bit AMD CPU uses a 64-bit x86 architecture.

 C. The ext4 filesystem is the fastest, and it uses enhanced journaling to

speed crash recovery while maintaining the overall integrity of the system.

 B. Linux systems use a dedicated swap partition by default for virtual

memory.

 D. The optimal size of the swap partition depends on what the system will

be used for. A workstation running lots of applications simultaneously will

need a large swap partition. A server providing network services may not

need one as large.

 B, D, E. You should consider creating separate partitions for /boot ,

/usr , and /home .

 A, C, D. Port 110 is used by the POP3 e-mail protocol. Port 25 is used by

the SMTP e-mail protocol. Port 143 is used by the IMAP e-mail protocol.

 D. The most likely cause of this problem is that the system is set to boot off

the hard drive first. When it can’t find the operating system on the hard

drive, the error message is displayed.

 C. /dev/sdb points to the second hard drive installed in a system.

 A. /dev/sda1 points to the first partition on the first hard drive in the

system.

 C. /dev/sda2 points to the second partition on the first hard drive in the

system.

 C. /dev/sdb1 points to the first partition on the second hard drive in the

system.

 B. The LC_CTYPE environment variable configures the default character

encoding.

 B. The fr_CA.UTF-8 locale value specifies French Canadian using

Unicode encoding.

 A. The LC_ALL locale variable overrides all other locale variables.

 A. The CUPS Scheduler handles IPP printing requests from CUPS clients.

 C. The http://192.168.1.20:631 URL can be used to access the CUPS

administration utility on a Linux system with an IP address of 192.168.1.20.

 D. The Browsing directive in the /etc/cups/cupsd.conf file

specifies whether cupsd will announce its printers using broadcasts on

the network.

 A. The hwclock -w command can be used to set the hardware clock on

a Linux system to the system time.

 D. Port 123 is used by the NTP daemon to synchronize time.

APPENDIX A
Objective Map

Exam XK0-005

APPENDIX B

About the Online Content

This book comes complete with TotalTester Online customizable practice
exam software with 180 practice exam questions and other book resources
including simulated performance-based questions, video demonstrations of
select chapter exercises, and downloadable virtual machines.

System Requirements

The current and previous major versions of the following desktop browsers
are recommended and supported: Chrome, Microsoft Edge, Firefox, and
Safari. These browsers update frequently, and sometimes an update may
cause compatibility issues with the TotalTester Online or other content
hosted on the Training Hub. If you run into a problem using one of these
browsers, please try using another until the problem is resolved.

Your Total Seminars Training Hub Account

To get access to the online content you will need to create an account on the
Total Seminars Training Hub. Registration is free, and you will be able to
track all your online content using your account. You may also opt in if you
wish to receive marketing information from McGraw Hill or Total
Seminars, but this is not required for you to gain access to the online
content.

Privacy Notice

McGraw Hill values your privacy. Please be sure to read the Privacy Notice
available during registration to see how the information you have provided
will be used. You may view our Corporate Customer Privacy Policy by
visiting the McGraw Hill Privacy Center. Visit the mheducation.com site
and click Privacy at the bottom of the page.

http://mheducation.com/

Single User License Terms and Conditions

Online access to the digital content included with this book is governed by
the McGraw Hill License Agreement outlined next. By using this digital
content you agree to the terms of that license.

Access To register and activate your Total Seminars Training Hub account,
simply follow these easy steps.

1. Go to this URL: hub.totalsem.com/mheclaim

2. To register and create a new Training Hub account, enter your e-mail
address, name, and password on the Register tab. No further personal
information (such as credit card number) is required to create an account.

If you already have a Total Seminars Training Hub account, enter your e-
mail address and password on the Log in tab.

3. Enter your Product Key: 0mxc-pknc-3v0q

4. Click to accept the user license terms.

5. For new users, click the Register and Claim button to create your
account. For existing users, click the Log in and Claim button.

You will be taken to the Training Hub and have access to the content for
this book.

Duration of License Access to your online content through the Total
Seminars Training Hub will expire one year from the date the publisher
declares the book out of print.

Your purchase of this McGraw Hill product, including its access code,
through a retail store is subject to the refund policy of that store.

The Content is a copyrighted work of McGraw Hill, and McGraw Hill
reserves all rights in and to the Content. The Work is © 2023 by McGraw
Hill.

http://hub.totalsem.com/mheclaim

Restrictions on Transfer The user is receiving only a limited right to use
the Content for the user’s own internal and personal use, dependent on
purchase and continued ownership of this book. The user may not
reproduce, forward, modify, create derivative works based upon, transmit,
distribute, disseminate, sell, publish, or sublicense the Content or in any
way commingle the Content with other third-party content without
McGraw Hill’s consent.

Limited Warranty The McGraw Hill Content is provided on an “as is”
basis. Neither McGraw Hill nor its licensors make any guarantees or
warranties of any kind, either express or implied, including, but not limited
to, implied warranties of merchantability or fitness for a particular purpose
or use as to any McGraw Hill Content or the information therein or any
warranties as to the accuracy, completeness, correctness, or results to be
obtained from, accessing or using the McGraw Hill Content, or any
material referenced in such Content or any information entered into
licensee’s product by users or other persons and/or any material available
on or that can be accessed through the licensee’s product (including via any
hyperlink or otherwise) or as to non-infringement of third-party rights. Any
warranties of any kind, whether express or implied, are disclaimed. Any
material or data obtained through use of the McGraw Hill Content is at
your own discretion and risk and user understands that it will be solely
responsible for any resulting damage to its computer system or loss of data.

Neither McGraw Hill nor its licensors shall be liable to any subscriber or to
any user or anyone else for any inaccuracy, delay, interruption in service,
error or omission, regardless of cause, or for any damage resulting
therefrom.

In no event will McGraw Hill or its licensors be liable for any indirect,
special or consequential damages, including but not limited to, lost time,
lost money, lost profits or good will, whether in contract, tort, strict liability
or otherwise, and whether or not such damages are foreseen or unforeseen
with respect to any use of the McGraw Hill Content.

TotalTester Online

TotalTester Online provides you with a simulation of the CompTIA Linux+
exam. Exams can be taken in Practice Mode or Exam Mode. Practice Mode
provides an assistance window with hints, references to the book,
explanations of the correct and incorrect answers, and the option to check
your answer as you take the test. Exam Mode provides a simulation of the
actual exam. The number of questions, the types of questions, and the time
allowed are intended to be an accurate representation of the exam
environment. The option to customize your quiz allows you to create
custom exams from selected domains or chapters, and you can further
customize the number of questions and time allowed.

To take a test, follow the instructions provided in the previous section to
register and activate your Total Seminars Training Hub account. When you
register, you will be taken to the Total Seminars Training Hub. From the
Training Hub Home page, select your certification from the Study drop-
down menu at the top of the page to drill down to the TotalTester for your
book. You can also scroll to it from the list on the Your Topics tab of the
Home page, and then click on the TotalTester link to launch the TotalTester.
Once you’ve launched your TotalTester, you can select the option to
customize your quiz and begin testing yourself in Practice Mode or Exam
Mode. All exams provide an overall grade and a grade broken down by
domain.

Other Book Resources

The following sections detail the other resources available with your book.
You can access these items by selecting the Resources tab or by selecting
CompTIA Linux+ All-in-One Exam Guide, 2e (XK0-005) from the Study
drop-down menu at the top of the page or from the list on the Your Topics
tab of the Home page. The menu on the right side of the screen outlines all
of the available resources.

Performance-Based Questions

In addition to multiple-choice questions, the CompTIA Linux+ exam
includes performance-based questions (PBQs), which, according to
CompTIA, are designed to test your ability to solve problems in a

simulated environment. More information about PBQs is provided on
CompTIA’s website. You can access the performance-based questions
included with this book by navigating to the Resources tab and selecting
Performance-Based Questions Quiz. After you have selected the PBQs, an
interactive quiz will launch in your browser.

Virtual Machines

You can download the virtual machine files included with this book by
navigating to the Resources tab and selecting Virtual Machines. Then select
VM Setup Instructions to view detailed instructions on how to download
and install the two virtual machine images provided.

Videos

Video MP4 clips from the authors of this book provide detailed
demonstrations of select chapter exercises. You can access these videos by
navigating to the Resources tab and selecting Videos.

Technical Support

For questions regarding the TotalTester or operation of the Training Hub,
visit www.totalsem.com or e-mail support@totalsem.com.

For questions regarding book content, visit
www.mheducation.com/customerservice.

http://www.totalsem.com/
mailto:support@totalsem.com
http://www.mheducation.com/customerservice

INDEX

A

aa-complain command, 563

aa-disable command, 563

aa-enforce command, 563

aa-unconfined command, 563

absolute file paths, 123–124

ACCEPT policy for iptables chains, 510

access control lists (ACLs)

files, 175–176

firewalls, 505–506

settings, 174

access points for Wi-Fi, 384

access timestamps, 128–129

accessibility features, 654–655

ACTION key

udev assignments, 373

udev rule match, 372

add key

udev assignments, 373

udev rule match, 372

addition in scripts, 410

Address Resolution Protocol (ARP), 444

addresses

input/output, 377–379

IP. See IP addresses

MAC, 444

Advanced Format (AF), 182

Advanced Programmable Interrupt Controllers (APICs), 375–376

Advanced Research Projects Agency (ARPA), 2

AF (Advanced Format), 182

agent orchestration processes, 575

agentless orchestration processes, 575

aging passwords, 535

alert priority in logs, 548

alias command, 75–76, 143–144

aliases

command shortcuts, 75–76, 143–144

container images, 599

e-mail, 662

listing, 145

network interfaces, 449

sudo, 531–532

working with, 84–86

all_partitions assignment key, 373

ALTER TABLE database command, 663

ambassador containers, 595

American Standard Code for Information Interchange (ASCII) character set

description, 78

encoding, 657

ampersands (&)

background processes, 265

command sequencing, 403

redirection, 90

Anaconda, 602

anacron service, 277

AND operators in scripts, 410

Android operating system, 15

Ansible program, 576

antivirus_can_scan_system boolean, 561

APICs (Advanced Programmable Interrupt Controllers), 375–376

app store for package managers, 310–312

AppArmor module, 562–563

append BLOBs, 594

AppImage package manager, 311–312

Application layer in OSI Reference Model, 441

application software, 7–11

apropos command, 10–11

apt-cache utility, 308

apt-get utility, 309

architecture

Debian packages, 307

defined, 290

in deployment plans, 639

RPM packages, 291–292

architecture-dependent code, 5

archives in volume management, 229–231

arithmetic operators in scripts, 410

ARP (Address Resolution Protocol), 444

ARPA (Advanced Research Projects Agency), 2

ASCII (American Standard Code for Information Interchange) character set

description, 78

encoding, 657

assembly language, 3

assignment keys for udev rules, 372–374

asterisks (*)

crontab file, 275–276

grep utility, 148

multiplication, 410

password field, 109

wildcard characters, 403

asymmetric encryption, 483, 485–486

at daemon, 271–274

AT&T breakup, 3

atd daemon, 271–272

athlon architecture in RPM packages, 292

atrm daemon, 273

attach command, 597

ATTR key

udev assignments, 373

udev rule match, 372

attributes

files, 175

RPM, 295

audit2allow command, 562

audit2why command, 562

audits

auditd system, 545

SELinux, 561–562

user access, 542–543

authentication

failed attempts, 555

multifactor, 528

PAM, 536–537

public key, 493–494

remote, 626

single sign-on, 499–501

SSH, 491–492

authorized_keys in SSH, 494

authpriv facility, 547

autobackup service, 280–282

autobackup.timer file, 280–281

automation

DevOps. See DevOps

installations, 602

automounting NFS, 472

AutoYaST service, 575

available filesystems, 197–198

awk command, 426

filtering file contents, 427–428

filtering output, 427

scripts, 428–429

B

B-tree File System (BTRFS), 198, 200

background processes, 265–266

backslashes (\)

aliases, 76, 144

command-line continuation, 10

grep utility, 148

backticks (`) for command substitution, 404

backups

automating, 279–280

directories, 231

exercise, 235

GPG keys, 516

media, 229–230

strategy, 230–231

utilities, 231–235

Bandwidth Fair Queuing (bfq) scheduler, 211, 615–616

bare-metal hypervisors, 590

bash configuration files, 82–84

Basic Input/Output System (BIOS)

boot process, 332–335

GPTs, 183

listing, 609

MBRs, 182–183

batch command, 274

batch processing, 1–2

Bell Labs MULTICS involvement, 2–3

Bell-LaPadula model, 560

bfq (Bandwidth Fair Queuing) scheduler, 211, 615–616

bg command, 265–266

/bin directory, 122

binary files

converting, 421–422

executables, 250

binary large object (BLOB) storage, 594

binary numbers in IP addresses, 444–445

biometric systems, 528

BIOS. See Basic Input/Output System (BIOS)

blkid command, 197–198

BLOB (binary large object) storage, 594

block BLOBs, 594

block devices

encryption, 195–196

permissions, 164

block directory, 364–366

block size in filesystems, 199

Bluetooth configuration, 382–383

bluetoothctl command, 382–383

bluez package, 382

bodies in text files, 419–421

bonding networks, 497–499, 593

Boolean operators in scripts, 410–411

booleans, SELinux, 560–561

/boot directory, 122

/boot/efi directory, 335

/boot partition, 641

boot process

BIOS POST phase, 332–335

dependencies, 346

GRUB2 bootloader phase, 335–340

kernel phase, 340–341

overview, 331–332

questions, 351–353

review, 349–350

System V initialization, 341–349

systemd unit files, 344–347

bootloader phase, 335–340

BOOTPROTO parameter, 452–453

bootstrap phase

BIOS, 332–333

PXE, 334

UEFI, 334–335

BounceKeys feature, 654

brace expansions, 403

branching structures in scripts, 414–416

brctl command, 498

bridges in virtualization, 592–593

BROADCAST parameter for IPv4 addresses, 452

BTRFS (B-tree File System), 198, 200

build command, 597

building filesystems, 198–204

builtin commands, 144

bus directory, 365, 367–368

BUS key for udev rules, 372

buses in PCI system, 359

bzip2 utility, 231–232

C

C language, 3

cancelling print jobs, 393–394, 660

carets (^) in grep utility, 148

CAs (certificate authorities), 483

case sensitivity of commands, 10

case statement in scripts, 413–414

cat command, 9

log files, 555

text, 134

cat /proc/filesystems command, 197

cd command, 8, 124

CentOS distribution, 637

certificate authorities (CAs), 483

certificates

asymmetric encryption, 483

key revocation, 518–520

CF Engine program, 577

chage command

passwords, 109–110, 535

user accounts, 106

chains, iptables, 509–510

change timestamps, 128–129

channels in Wi-Fi, 384

character devices, 164

characters

changing, 418–419

converting binary files to, 421–422

deleting and replacing in vi, 58

encoding, 78–79

chattr command, 175

checksums in RPM packages, 294

Chef program, 577

chgrp utility, 161–162

child processes, 72–73, 252–253

chkconfig command, 503

chmod command

permissions, 166–167, 171, 177

scripts, 402

swap space, 202

chown utility, 161

chrony utility, 470–471

CHS (cylinder, head, sector) addressing, 183

chsh command, 404

CIDR notation for IPv4 addresses, 447

cifs filesystems, 198

classes

Bluetooth, 382

device, 360, 368

IPv4 addresses, 446–447

CLI (command-line interface) in shell, 72

cloning disks, 234–235

cloud computing

implementations, 16–17

virtualization. See virtualization

cloud-init utility, 594

clusters, 596, 601

Cmnd_Alias, 531, 533

code points, 78–79

collaboration with Git, 580–583

collisions in hashing, 484

command keys in nano text editor, 62–63

command-line interface (CLI) in shell, 72

command line management

groups, 113–115

ownership, 161–162

permissions, 165–169

user accounts, 106–115

command-line mode in vi

description, 56

working in, 59–61

commands

aliases, 75–76, 143–144

continuation, 10

external, 144–145

function, 144

history, 8–9

options, 10–11

sequencing, 403–404

substitution, 404

yum, 301–302

comments

scripts, 405

user accounts, 102

commit command for containers, 597

Common UNIX Printing System (CUPS)

configuring, 658–661

description, 389

compatibility of hardware, 638–639

Compatible Time-Sharing System (CTSS), 2

compgen command, 144

compiling executables, 315–316

compression for backups, 231–234

computer troubleshooting

CPU performance, 610–611

device validation, 617–620

hardware configuration, 608–609

memory performance, 611–612

storage performance, 614–617

concurrent processes, 250

conditionals in scripts, 411–414

Confidential access, 556

configuration files

nano, 64

vi, 60–61

connectionless protocols, 442

connections

networks, 626–627

USB devices, 387–388

consoles, virtual, 617–618

constants in scripts, 405

containers, virtualization

image deployment, 599

managing, 597–598

markup languages, 596–597

overview, 594–596

persistent storage, 600–601

removing, 601

contents

directories, 125–126

files, 134–135, 147–150, 427–428

contexts in SELinux, 557–559, 563–564

continuation, command-line, 10

converting

binary files, 421–422

decimal numbers to binary, 444–445

encodings, 657

Coordinated Universal Time (UTC), 79

copying

disk drives, 234–235

files, 135–136

vi lines, 58

core files, limiting, 538–541

corruption of filesystems, 207

cp command, 135–136

cpio utility, 232–233, 296–297

CPUs

interrupts, 376–377

performance, 610–611

time limitations, 540

crash utility, 349

crashes, troubleshooting, 309–310

CREATE_MAIL_SPOOL variable, 107

CREATE TABLE command, 663

crit priority for logs, 548

cron_can_relabel boolean, 561

cron daemon, 274

managing system jobs, 275–277

operation, 274

scheduling system jobs, 275–277

cron facility, 547

cron log files, 554

crond daemon, 274

crontab command, 276

crontab file, 275–276

cryptsetup command, 196

CTRL-Z keys, 266

CTSS (Compatible Time-Sharing System), 2

CUPS (Common UNIX Printing System)

configuring, 658–661

description, 389

cupsaccept command, 392, 660

cupsdisable command, 393, 660

cupsenable command, 393, 661

cupsreject command, 392, 660

curl command, 313–314

cursor movement in vi, 57–58

cut command, 419

cylinder, head, sector (CHS) addressing, 183

D

DAC (Discretionary Access Control), 99, 556

daemon facility, 547

daemon-reload command, 205–206

daemons

description, 344

system processes, 251–252

Dandified YUM (DNF) package manager, 303–304

DARPA (Defense Advanced Research Projects Agency), 2

Data Link layer in OSI Reference Model, 441

database files, quota, 212

Datagram Transport Layer Security (DTLS), 494

date command, 79–80, 657

dates

displaying, 79–80

scheduling processes, 273

time zone settings, 657

DCC (DMA controller chip), 374

dd command

cloning, 234–235

random data, 196

swap space, 201–202, 613

deadline scheduler setting, 615

Debian distribution

derivatives, 14

description, 13

Debian Package Manager (dpkg), 306

apt-get utility, 309

managing packages, 307–308

naming packages, 306–307

viewing package information, 308

debug priority in logs, 548

decimal notation, converting binary files to, 421–422

declare command for variables, 406

default gateways, 455–457

default partition numbers, 191

default permissions, 169–171

default setting in GRUB, 336–337

Default_Shell field, 102

Defense Advanced Research Projects Agency (DARPA), 2

DelayKeys feature, 654

DELETE database command, 663

deleting and removing

aliases, 76

containers, 601

dpkg packages, 307–308

files, 135

groups, 114

links, 132, 226

partitions, 192–193

printers, 390, 394–395

RPM packages, 294

snapshots, 228

swap files, 614

user accounts, 110

vi characters and words, 58

vi lines, 58

volumes, 227

yum packages, 302

ZYpp packages, 304–305

ZYpp repositories, 306

delimiters in awk command, 426

dependencies

boot process, 346

kernel modules, 361–364

shared libraries, 318–320

software packages, 294, 641–642

units, 349

deployments

container images, 599

containers, 596

depmod command, 361–362

derivatives in distributions, 13–14

desktop

implementations, 14–15

locking, 528–529

detecting

PCI devices, 359–361

USB devices, 358–359

detecting intruders, system logs for, 555–556

/dev directory, 122, 368–374

/dev/disk/by-id directory, 668

/dev/disk/by-partlabel file, 668–670

/dev/disk/by-partuuid file, 669

/dev/disk/by-path directory, 667–668

/dev/disk/by-uuid, 668–669

/dev/log file, 546–547

/dev/mapper method, 196

/dev/null device, 90

device directory, 367

device discovery

exercise, 381–382

host bus adapters, 361

kernel and user space, 356–358

PCI system, 359–360

udev, 368–374

device IDs in SCSI, 386

devices

drivers, 5

locating, 666–668

names in GRUB, 336

naming conventions, 184–185

DevOps

Git revision control system, 577–584

orchestration concepts, 573–575

orchestration processes, 575–577

questions, 585–588

review, 584–585

DEVPATH key for udev rules, 372

df command

disk space, 618

filesystems, 202, 207–208

dhclient command, 453–454, 624

DHCP (Dynamic Host Configuration Protocol) servers

leases, 454

PXE clients, 334

differential backups, 230

dig (Domain Information Groper) utility, 467–468

Direct Memory Access (DMA)

channels, 375

description, 374–375

DMA controller chip, 374–375

directories

backups, 231

changing, 124

contents, 125–126

creating, 133

current, 123

FHS, 121–123

listing, 8

managing, 136–139

permissions. See permissions

questions, 151–157

review, 150–151

troubleshooting, 619

Disabled mode in SELinux, 559–560

disabling

display managers, 653

logins, 540–542

NICs, 451

printers, 392–393

printing, 660

unused services, 502–504

USB ports, 529

ZYpp repositories, 306

Discretionary Access Control (DAC), 99, 556

disk cloning, 234–235

disk partitions. See partitions

disk signatures, 182, 334

disk space for partitions, 189

Display Manager, 653–654

DISPLAY variable, 652

distribution designators for RPM packages, 291

distributions

derivatives, 13–14

description, 11

differences, 11–12

selecting, 637

division in scripts, 410

DMA (Direct Memory Access)

channels, 375

description, 374–375

DMA controller chip, 374–375

dmesg command

kernel ring buffer, 356–357

log files, 554

mounting media, 204

USB devices, 387

dmidecode command, 608–609

DNF (Dandified YUM) package manager, 303–304

DNS servers

name resolution tools, 467–469

name resolver settings, 458–460

docker.io registry, 598

Docker platform, 596–601

dollar signs ($)

command substitution, 404

grep utility, 148

positional parameters, 407

variables, 73

Domain Information Groper (dig) utility, 467–468

dotted quad addresses, 444

dpkg.log files, 554

dpkg packages. See Debian Package Manager (dpkg)

driver directory, 367

DRIVER key for udev rules, 372

DROP policy for iptables chains, 510

DROP TABLE database command, 663

DTLS (Datagram Transport Layer Security), 494

du command, 208–209

dual-homed networks

high-availability networking, 497

virtualization, 593

dumpe2fs command, 209

Dynamic Host Configuration Protocol (DHCP) servers

leases, 454

PXE clients, 334

dynamic IP addresses, 449–450, 624–625

dynamic IP ports, 444

dynamic port forwarding, 496–497

dynamic shared libraries, 318–319

E

e-mail

configuring, 661–662

phishing, 506, 536

servers, 15

e2fsck command, 210, 670

echo command, 9, 72

EDITOR variable, 74, 83

editors

nano, 62–64

sed, 422–426

vi. See vi text editor

edquota command, 213

effective group IDs (EGIDs), 172

effective user IDs (EUIDs), 172–173

EFI system partition (ESP), 335

EGIDs (effective group IDs), 172

egrep utility, 148–149

elif statement in scripts, 413

emacspeak screen reader, 655

embedded hypervisors, 591

embedded Linux, 17

EMBRs (Extended Master Boot Records), 183

emerg priority in logs, 548

enabling

display managers, 653

RAID, 235–238

SELinux, 559–560

ZYpp repositories, 306

encrypted devices, mounting, 206

encryption

asymmetric, 482–483

block devices, 195–196

GPG, 513–522

integrity checking, 484–485

overview, 482

SSH, 485–486

symmetric, 482–483

ending processes, 266–268

Enforcing mode in SELinux, 559–560

env command, 74

ENV key

udev assignments, 373

udev rule match, 372

environmental variables, 74–75

erasing

RPM packages, 294

ZYpp packages, 304–305

err priority in logs, 548

error message redirection, 89–90

eSATA ports, 386

eSATAp ports, 386

escape characters for awk command, 426

ESP (EFI system partition), 335

ESSIDs (Extended Service Set Identifications), 384

/etc/aliases file, 662

/etc/apparmor.d/ directory, 562–563

/etc/apparmor.d/tunables/ file, 562

/etc/apt/sources.list file, 309

/etc/at.allow file, 272

/etc/at.deny file, 272

/etc/bash.bashrc file, 12

/etc/bashrc file, 12, 83

/etc/chrony.conf file, 470–471

/etc/cloud/cloud.cfg file, 594

/etc/cron.allow file, 276–277

/etc/cron.daily directory, 275

/etc/cron.deny file, 276–277

/etc/cron.hourly directory, 275

/etc/cron.monthly directory, 275

/etc/cron.weekly directory, 275

/etc/crontab file, 275–276

/etc/crypttab file, 206

/etc/cups/classes.conf file, 389

/etc/cups/cup-files.conf file, 388

/etc/cups/printers.conf file, 658

/etc/default/grub file, 336–337

/etc/default/interfaces file, 456

/etc/default/ufw file, 513

/etc/default/useradd file, 103, 107

/etc/dhcp/dhclient.conf file, 624–625

/etc/dhcpd.conf file, 452

/etc directory

backing up, 231

purpose, 122

/etc/dnf file, 304

/etc/dpkg file, 307

/etc/fstab file

editing, 211–212

filesystems, 238

mount parameters, 204–205

network-based filesystems, 473

/etc/group file, 103–104, 114

/etc/grub.d/ directory, 337

/etc/gshadow file, 103, 113

/etc/hostname file, 452

/etc/hosts file, 458–459, 624

/etc/init.d directory

Display Manager, 653–654

init scripts, 255

/etc/inittab file, 341–342

/etc/kde/kdm file, 654

/etc/ld.so.cache file, 320

/etc/ld.so.conf file, 319–320

/etc/lightdm/lightdm.conf.d file, 653

/etc/lightdm/lightdm.conf file, 653

/etc/locale.conf file, 78

/etc/localtime file, 80, 657

/etc/login.defs file

password aging, 108

shadow files, 626

system accounts, 100

user accounts, 103, 107–108

/etc/logrotate.conf file, 548–549

/etc/logrotate.d/ directory, 549

/etc/magic file, 134

/etc/mdadm.conf file, 239

/etc/modprobe.d directory, 361, 363

/etc/motd file, 542

/etc/nanorc file, 64

/etc/netplan directory, 575

/etc/nologin file, 537, 541

/etc/nsswitch.conf file, 459, 624, 626–627

/etc/ntp.conf file, 469–470

/etc/pam.d directory, 536

/etc/pam.d/login file, 542

/etc/pam.d/passwd file, 107, 626

/etc/pam.d/sshd file, 536–537

/etc/passwd file, 102–103, 110, 536

/etc/printers.conf file, 389

/etc/profile.d directory, 84

/etc/profile file, 82–84

/etc/rc.d directory, 255

/etc/resolv.conf file, 459, 624

/etc/rsyslog.conf file, 546–548

/etc/securetty file, 617

/etc/security/limits.conf file, 539–540

/etc/selinux/config file, 559

/etc/selinux/targeted/contexts/files/file_contexts file, 559

/etc/services file, 486

/etc/shadow file, 101–103, 536

/etc/skel directory, 108–110

/etc/ssh/ssh_config file, 486

/etc/ssh/ssh_host_key file, 485

/etc/ssh/ssh_host_key.pub file, 485

/etc/ssh/ssh_known_hosts file, 486

/etc/ssh/sshd_config file, 486

/etc/sudoers file, 531–533

/etc/sysconfig/network file, 460

/etc/sysconfig/network-scripts directory, 452, 593

/etc/sysconfig/network-scripts/ifcfg file, 455

/etc/sysconfig/network-scripts/ifcfg-bond0 file, 498

/etc/sysconfig/selinux file, 559

/etc/sysctl.conf file, 625

/etc/sysctl.d/directory, 625

/etc/systemd/journald.conf file, 552

/etc/systemd/system file, 344

/etc/systemd/system/default.target file, 348

/etc/udev/rules.d directory, 368–369, 371

/etc/ufw directory, 513

/etc/updated.conf file, 142

/etc/updatedb.conf file, 142

/etc/vimrc file, 60–61

/etc/X11/gdm file, 654

/etc/X11/kdm file, 654

/etc/X11/xdm/xdm-config file, 653

/etc/X11/xorg.conf.d directory, 650–652

/etc/X11/xorg.conf file, 650–652

/etc/yum.conf file, 298–299, 301

/etc/yum.repos.d directory, 299–301

/etc/zypp/ file, 304

ethtool command, 451

EUIDs (effective user IDs), 172–173

Ewing, Marc, 12

exclamation points (!)

account fields, 108

passwords, 108

shebang lines, 404

wildcard characters, 403

executables

compiling, 315–316

installing, 316

Execute permission, 163–165

exiting vi, 59–60

Expire field in user accounts, 103

export command for variables, 74

expressions in scripts, 408–411

ext3 filesystems, 198

ext4 filesystems, 198

Extended Master Boot Records (EMBRs), 183

extended partitions, 191–192

Extended Service Set Identifications (ESSIDs), 384

extending LVMs, 228–229

extensions, file, 128, 274

Extents File System (XFS) filesystem, 198–200

external commands, 144–145

F

facilities, 547–548

failed logins, managing, 538

failed units, 347

faillock utility, 538

faillog log file, 546

fault tolerance

dual-homed networks, 593

network bridging, 497–498

fd0 file descriptor, 87

fd1 file descriptor, 87

fd2 file descriptor, 87

fd255 file descriptor, 87

fdisk command for partitions

creating, 189–192

deleting, 192

displaying, 185–186

Fedora Desktop Edition, 15

Fedora distribution, 12, 637

fg command, 265–266

fgrep (Fixed Regular Expression Print) command, 149

FHS. See Filesystem Hierarchy Standard (FHS)

fi statement in scripts, 413

file and print servers, 15

file assignment key, 373

file command, 134

file contents

filtering, 427–428

finding, 147–150

viewing, 134–135

file descriptors, 87

file extracts, printing, 419

file formats in virtualization, 591–592

file test operators in scripts, 411–412

filenames, 127–128

files

access control lists, 175–176

attributes, 175

builtin commands, 144

copying and moving, 135–136

creating, 128–129

deleting, 135

finding, 139–142, 146–147

limiting, 538–539

links, 129–133

managing, 136–139

open, 228

ownership. See ownership

permissions. See permissions

questions, 151–157

review, 150–151

security, 556–562

service, 255

troubleshooting, 618–619

types, 133–134

Files section in X Window System, 651

Filesystem Check utility (fsck), 207, 210

Filesystem Hierarchy Standard (FHS)

directories, 121–123

directory contents, 125–126

navigating, 123–127

questions, 151–157

review, 150–151

filesystems

available, 197–198

building, 198–204

choosing, 640

database files, 212

df command, 207–208

du command, 208–209

integrity, 210–211

journaled, 202–203

managing, 207–211

mounting, 203–206

partitions. See partitions

planning, 639–640

questions, 217–221

quotas, 211–213

review, 216–217

troubleshooting, 207

filtering

awk output, 427–428

file contents, 427–428

find utility

files, 139–140

user access, 542–543

finding files

contents, 147–150

exercise, 146–147

find, 139–140

locate, 142

whereis, 145

xargs, 141–142

firewall-cmd command, 507–508

firewall log file, 546

firewalld service, 504–508

firewalls, 504–505

implementing, 509

iptables, 509–512

nftables, 513

operation, 505–506

packet-filtering, 506–508

UFW, 513

validating, 627–628

firmware directory, 365

fixed encoding, 79

fixed references for at daemon, 273

Flarum program, 574

flash drives, 387

Flatpack package manager, 311–312

Flynn program, 575

footers in text files, 419–421

for loops in scripts, 415–416

foreground processes, 265–266

forgotten root passwords, 338–340

forking processes, 254

FORWARD chains for iptables, 509

forwarding SSH ports, 496–497

ForwardToSyslog parameter, 552

Freax (Free UNIX) development environment, 4

free command, 201

free disk space, 207–209

Free Software Foundation, 4

FreeBSD kernel, 13

frequency in Wi-Fi, 384

fs directory, 365

fsck (Filesystem Check utility), 207, 210

FTP, 334

ftpd_full_access boolean, 561

full backups, 230

function commands, 144

functions in scripts, 408

FUSE filesystems, 198

fuser command, 206, 670

G

gateways

routing, 455–457

troubleshooting, 625–626

gawk command, 427

gdisk command, 194–195

gdm display manager, 654

General Electric MULTICS involvement, 2–3

General Public License (GPL), 4

getenforce command, 559

getfacl command, 176

getsebool command, 561

GIDs (group IDs)

groups, 113

user accounts, 104–105

git-commit command, 579

git-config command, 579

git-diff command, 579

git-log command, 580

git-remote command, 582

Git revision control system

collaboration with, 580–583

exercise, 583–584

overview, 577

working with, 577–580

gitignore files, 579

globally unique IP addresses, 445

globbing wildcard characters, 402–403

GNOME Onscreen Keyboard (GOK), 655

GNU (GNU is Not UNIX), 4

GNU Privacy Guard (GPG) encryption, 513–514

operation, 514–518

working with, 518–522

GOK (GNOME Onscreen Keyboard), 655

GOTO assign key, 373

gpasswd command, 114

gpg.conf file, 514

GPG (GNU Privacy Guard) encryption, 513–514

operation, 514–518

working with, 518–522

GPL (General Public License), 4

GPTs (GUID Partition Tables), 183–184, 664–665

grace periods for quotas, 212

grandparent processes, 253

graphical user interface (GUI), 72

graphics cards, 620

greater than signs (>)

stderr device, 89–90

stdout device, 88–90

grep utility, 147–150

GROUP assign key, 373

group IDs (GIDs)

groups, 113

user accounts, 104–105

groupadd command, 113–115

groupdel command, 114

groupmod command, 114

groups

command line management, 113–115

LVM, 226

overview, 113–115

permissions, 164, 167–168

questions, 116–120

quotas, 213

review, 115–116

security, 556–562

GRUB Legacy bootloader, 336

GRUB2 bootloader

changing operations, 338

/etc/default/grub file, 336–337

exercise, 340

interactive options, 337

kernel initiation phase, 340–341

passwords, 338–340

versions, 335–336

GTkeyboard, 655

GUI (graphical user interface), 72

GUID Partition Tables (GPTs), 183–184, 664–665

gzip utility, 231–232

H

halt command, 343

handles for file, 87

hard limits for quotas, 212

hard links, 130–131

hardware

compatibility, 638

device discovery, 356–361

hdparm utility, 387–388

kernel modules, 361–364

lsscsi command, 388

optical drives, 386

printers, 389–396

questions, 397–400

review, 396–397

hardware compatibility lists (HCLs), 638–639

hardware configuration

APICs, 375–376

Bluetooth, 382–383

DMA, 374–375

I/O ports, 377–379

IDE, 385

interrupt request channels, 376–377

IRQs, 375–376

lsdev command, 374

lshw command, 379–381

PICs, 375

/proc/interrupts file, 376

SATA, 386

SCSI, 385–386

SSD, 386–387

USB, 387–388

verification, 608–609

Wi-Fi, 383–384

hardware layer, 4

hashed commands, 145

hashing, 484–485

HBAs (host bus adapters)

overview, 361

SCSI, 386

hcitool command, 382

HCLs (hardware compatibility lists), 638–639

HDD virtualization file format, 592

hdparm utility, 387–388

head command

description, 134, 430

log files, 553

headers

GPT, 664–665

text files, 419–421

heredity in processes, 252–253

heredoc for redirection, 88

hexadecimal notation

converting binary files to, 421–422

input/output addresses, 378

hextets in IPv6 addresses, 460

hidden files, 125

high-availability networking, 497–499

history command, 8–9

history of Linux

ARPA/DARPA, 2

batch processing, 1–2

compatible time-sharing system, 2

GNU, 4

MINIX, 3

MULTICS, 2–3

review, 17

Torvalds, 4

UNIX, 3

/home directory

backing up, 231

contents, 122

Home_Directory field in user accounts, 102

host addresses in subnet masks, 446–448

Host_Alias, 531, 533

host-based firewalls, 505

host bus adapters (HBAs)

overview, 361

SCSI, 386

host command, 468

hosted hypervisors, 591

HOSTNAME variable, 83

hot-backup RAID systems, 236

htop command for processes, 257–258

httpd process for containers, 595

hwclock command, 81

hyperthreading CPUs, 250

hypervisors, 16, 590–591

I

I/O (input/output) addresses and ports, 377–379

i386 architecture, 291

i586 architecture, 291

i686 architecture, 292

IaaS (Infrastructure as a Service), 16

IaC (infrastructure as code, 576

ICANN (Internet Corporation for Assigned Names and Numbers), 443

ICMP (Internet Control Message Protocol), 440, 442–443

iconv command, 657

id command, 104

IDE (Integrated Drive Electronics)

description, 385

devices, 666

IDs for partitions, 192

if then else statements in scripts, 412–413

ifcfg command, 499

ifcfg-ens32 file, 452

ifconfig command

IPv4 addresses, 449–450

network cards, 499

network device scanning, 383

network performance, 621

iftop command, 622

ignore_device assignment key, 373

ignore_remove assignment key, 373

images command, 597

images, container, 599

implementations, 14

cloud computing, 16–17

desktop system, 14–15

embedded Linux, 17

mobile Linux, 15

server, 15

virtualization, 16

IMPORT assign key, 373

Inactive field for user accounts, 103

INACTIVE variable, 103, 108

incremental backups, 230

index nodes (inodes)

filesystems, 199

metadata, 127–128

info priority in logs, 548

Infrastructure as a Service (IaaS), 16

infrastructure as code (IaC), 576

init 0 command, 342

init 6 command, 342

init process, 252–254

initramfs disk, 340

initrd disk, 340–341

inittab file, 341–342

inodes (index nodes)

filesystems, 199

metadata, 127–128

input

redirection, 88

scripts, 406–407

INPUT chains in iptables, 509

input/output device troubleshooting, 210–211

input/output (I/O) addresses and ports, 377–379

InputDevice section in X Window System, 651

INSERT INTO database command, 663

insert mode in vi, 56–57

insmod command, 362

inspect command for containers, 597

[Install] stanza in vsftpd.service file, 345–346

installation files, preparing, 313–315

installing

dpkg packages, 307–309

executables, 316

Linux. See Linux installation and configuration

RPM applications. See Red Hat Package Manager (RPM)

RPM packages, 292–293

software from source code, 313–317

yum packages, 302

ZYpp packages, 304–305

INT (interrupt) wire, 376–377

integer variables in scripts, 405

Integrated Drive Electronics (IDE)

description, 385

devices, 666

integrity

filesystems, 210–211

hashing, 484–485

interactive terminal for container images, 600

internal shell commands, 250

Internet Control Message Protocol (ICMP), 440, 442–443

Internet Corporation for Assigned Names and Numbers (ICANN), 443

Internet Protocol, 442

interrupt (INT) wire, 376–377

interrupt request channels, 376–377

interrupt request levels (IRQs), 375–376

intruder detection, system logs for, 555–556

ioping command, 211, 616

iostat command, 211, 615

IP addresses

IPv4 overview, 444–449

IPv4 parameters, 449–454

IPv6, 460

name resolver settings, 457–460

network devices, 621

protocols, 440–444

routing parameters, 455–457

subnet masks, 446–448

troubleshooting, 624–625

virtualization, 592

ip command

IPv4 addresses, 450–451

network device scanning, 383

network devices, 621

routing, 457

ip6tables command, 513

IPADDR parameter, 452

iperf command, 622–624

iptables, 509–512

iptables-restore command, 511

iptables-save command, 511

iptables-translate utility, 513

IPv4 addresses

overview, 444–446

parameters, 449–454

subnet masks, 446–448

IPv6 addresses, 460

IRIX operating system, 199

IRQs (interrupt request levels), 375–376

ISO images in Linux installation, 643

iw command, 383–384

iwconfig command, 384

J

Java Script Object Notation (JSON), 596–597

jekyll program, 574

journalctl command

boot messages, 331

logs, 554, 556

overview, 550–552

timers, 282

journald daemon, 550–552

journaled filesystems, 202–203

JSON (Java Script Object Notation), 596–597

K

Kali distribution, 14, 637

KDE display manager, 654

kdump utility, 349

Kerberos authentication, 500–501

kern facility, 547

kern.log log file, 546

kernel

description, 4

GRUB2, 340–341

GRUB2 bootloader, 340–341

kernel ring buffer, 356–357

kernel space setup, 356

microkernel, 5

module management, 361–364

monolithic, 5

kernel directory, 365

KERNEL key for udev rules, 372

kernel panics, 349

kexec utility, 349

keyboards

accessibility, 654–655

maps, 619

keys

asymmetric encryption, 483

GPG, 516

revocation certificates, 518–520

SSH, 485–486, 491–492, 494

symmetric encryption, 482–483

kickstart, 602

kill command, 266–268

killall command, 266–268

kinit command, 501

klist command, 501

ksvalidator command, 602

ksverdiff command, 602

Kubernetes platform, 601

KVM virtualization platform, 16

kyber scheduler, 211

L

LABEL assignment key, 373

LANANA (Linux Assigned Name and Number Authority), 666

LANG variable, 76–77, 656

LAPICs (Local APICs), 375–376

last command for log files, 555–556

Last_Modified field in user accounts, 102

last_rule assignment key, 373

lastb command, 555

lastlog log file, 546, 556

lastlog utility, 546, 556

Latin-9 encoding, 657

layers in OSI Reference Model, 441–442

LBA (logical block addressing), 183–184

LC_ locale categories, 76–78

LC_ variables, 656

LD_LIBRARY_PATH environment variable, 320–321

LDAP (Lightweight Directory Access Protocol), 500

ldconfig command, 320

ldd command, 320

leases in DHCP, 454

less command

file contents, 134

log files, 555

less than signs (<) for stdin device, 88

letter shift encryption, 482

/lib directory, 122

/lib/udev/rules.d directory, 368–369

libraries, shared

exercise, 321

managing, 319–321

operation, 318–319

libvirt tool, 591–592

LightDM display manager, 653–654

Lightweight Directory Access Protocol (LDAP), 500

limits

quotas, 212

user, 538–540

line numbering text files, 419–421

lines in vi

changing, 58

copying and moving, 58

deleting, 58

links, 129–130

hard, 130–131

symbolic, 131–133

Linux Assigned Name and Number Authority (LANANA), 666

Linux installation and configuration

accessibility, 654–655

automating, 602

Display Manager, 653–654

distribution selection, 637

e-mail, 661–662

exercise, 646–649

filesystems, 639–641

hardware compatibility, 638

installation source, 643–646

introduction, 635–636

locale settings, 656–657

needs assessments, 636–637

network information, 643

printing, 658–661

questions, 671–677

review, 670

software package selection, 641–642

SQL database, 663–664

storage configuration, 664–670

system requirements, 638–639

time zone settings, 657

user accounts, 642–643

X Window System, 650–654

Linux Security Modules

AppArmor, 562–563

SELinux, 557–562

Linux Unified Key Setup (LUKS), 196

listening sockets, 503

ln command

link creation, 130

volumes, 226

loading processes, 252–254

Local APICs (LAPICs), 375–376

local area networks, troubleshooting, 622–624

local environment, 76

character encoding, 78–79

locale settings, 76–78, 656–657

local facilities, 548

locale command, 77

localectl command, 77–78, 619

locate utility, 142

locking

accounts, 108, 536–538

desktop, 528–529

logger utility, 549–550

logical block addressing (LBA), 183–184

logical partitions, 191–192

logical unit numbers (LUNs) for devices, 184–185

logical volume management (LVM), 189

components, 224

configuration, 225–227, 243–244

creating, 226–227

extending, 228–229

groups, 226

overview, 223–224

questions, 245–248

RAID, 235–244

review, 244–245

snapshots, 227–228

login shell for processes, 254

logins

disabling, 540–542

failed, 538

limiting, 540

operating system security, 528

script order, 83–84

into SSH without passwords, 490–492

logout, running processes after, 268–269

logrotate utility, 548–549

logs

configuring, 545–552

intruder detection, 555–556

troubleshooting with, 552–554

logs command for containers, 597

loopback interfaces in IPv4 addresses, 450

looping structures in scripts, 414–416

lp command, 391–392, 659

lpadmin command, 389–390

lpc command, 661

lpd command, 661

lpinfo command, 389

lpmove command, 394

lpoptions command, 660

lpr command, 391

lpr facility, 547

lpstat command, 389, 391, 393, 659

ls command

file type, 133–134

files and directories, 125–126

filesystems, 197

lsattr command, 175

lsblk command, 185

lsdev command, 374

lshw command

graphics cards, 620

hardware configuration information, 379–381, 608–609

lsmod command, 361

lsof command, 228

lspci command

graphics cards, 620

network performance, 622

PCI device detection, 359–361

lsscsi command, 388

lsusb command, 358–359

LUKS (Linux Unified Key Setup), 196

LUNs (logical unit numbers) for devices, 184–185

lvcreate command, 226–227

lvextend command, 229

LVM. See logical volume management (LVM)

lvreduce command, 227

lvremove command, 227

lvscan command, 227

M

MAC addresses, 444

MAC (Mandatory Access Control), 556, 562

magic numbers for files, 134

mail

configuration, 661–662

phishing, 506, 536

servers, 15

user accounts, 107

mail facility, 547

mail log file, 546

mail transfer agent (MTA), 661–662

mail utility, 661–662

MAIL variable, 83

maillog log files, 554

mailq command, 661

major numbers for devices, 666–667

make command, 315–316

Makefile files, 315

man command, 10–11

Mandatory Access Control (MAC), 556–557, 562

manual pages, 10–11

markup languages, 596–597

master boot code, 334

Master Boot Records (MBRs), 182–183, 333–334, 664

match keys for udev rules, 371–372

Max_Days field in user accounts, 103

MaxLevelStore parameter, 552

MBRs (Master Boot Records), 182–183, 333–334, 664

MCC (memory controller chip), 374

Mcilroy, Doug, 3

MD5 hashing, 484

md5sum command, 484

mdadm command, 238–239

mean time between failure (MTBF), 229

/media directory, 122

memory

management, 5

performance, 611–612

memory controller chip (MCC), 374

Message of the Day file, 542

messages log file, 546

metacharacters

egrep utility, 148–149

grep utility, 148

microkernel, 5

Min_Days field in user accounts, 103

MINIX operating system, 3

minor numbers for devices, 666–667

Mint derivative, 14

minus signs (-)

permissions, 166

subtraction, 410

mismatches in filesystems, 207

MIT MULTICS involvement, 2–3

mitigating network vulnerabilities, 502–504

mkdir command, 133

mkfs utility, 198–199

mkswap command, 201–202

MLS policy in SELinux, 560

/mnt directory, 122

mobile Linux, 15

MODE assign key, 373

modes

file, 163–166

RPM, 292

Modes section in X Window System, 651

modification timestamps, 128–129

modinfo command, 361–362

modprobe command, 362–363

modules directory, 365

monitoring SELinux, 557

monolithic kernel, 5

more command, 9

mount command, 203–206

mount points

filesystems, 203–205

system, 666

mount units, 205–206, 346

[Mount] stanza in vsftpd.service file, 345–347

mounting filesystems, 203–206

mouse accessibility, 655

moving

files, 135–136

partitions, 193

print jobs, 394

vi lines, 58

mozilla_read_content boolean, 561

mq-deadline scheduler, 211

MTA (mail transfer agent), 661–662

MTBF (mean time between failure), 229

mtr (my traceroute) command, 466

multicore CPUs, 250

MULTICS (Multiplexed Information and Computing Service), 2–3

multifactor authentication, 528

multiplication in scripts, 410

multitasking, 250

Murdock, Ian, 13

mv command, 135–136

my traceroute (mtr) command, 466

MySQL database configuration, 663–664

mysqld daemon, 554

mysqld.log file, 554

N

NAME assignment key, 373

name resolution

settings, 457–460

tools, 467–469

named pipes, 90–91

names

devices, 184–185, 336

dpkg packages, 306–307

files, 127–128

mount units, 346

network interfaces, 449

partitions, 193

RPM packages, 291–292

nano text editor, 62–64

Narrow SCSI, 385

NASA creation, 2

NAT (network address translation)

IPv4 addresses, 445

virtualization, 592

National Security Agency (NSA), 557

navigating FHS, 123–127

nc command, 466–467

ncmli command, 383

needs assessments in Linux installation, 636–637

netcat utility, 466–467

netfilter command, 509

NETMASK parameter for IPv4 addresses, 452

netstat utility

network device scanning, 383

network information, 464

open ports, 503

network address translation (NAT)

IPv4 addresses, 445

virtualization, 592

network addresses in subnet masks, 446

network-based filesystems, 472–473

network-based firewalls, 505

Network File System (NFS), 472–473

network interface controllers (NICs)

disabling, 451

nomenclature, 449

working with, 454–455

Network layer in OSI Reference Model, 441

NETWORK parameter in IPv4 addresses, 452

network security, 481

encryption, 482–485

firewalls. See firewalls

GPG encryption, 513–522

high-availability networking, 497–499

mitigating vulnerabilities, 502–504

questions, 524–526

review, 522–524

single sign-on, 499–501

tunnel networks. See tunnel networks

network stack, 5

Network Time Protocol (NTP), 469–471

network troubleshooting

connections, 626–627

exercise, 628–629

firewalls, 627–628

name resolution tools, 467–469

netcat utility, 466–467

netstat utility, 464

performance, 620–626

ping utility, 462–464

standardized model, 461–462

traceroute utility, 465–466

NetworkManager daemon, 452

networks

bonding, 497

bridge control, 498

bridging, 497–498

devices, scanning for, 383

exercise, 471–472

introduction, 439–440

IP addresses. See IP addresses

Linux installation, 643

network-based filesystems, 472–473

NIC, nomenclature, 449

NIC, working with, 454–455

OSI Reference Model, 440–442

questions, 476–479

review, 473–475

routers, 17

routing parameters, 455–457

security. See network security

synchronizing time, 469–471

troubleshooting. See network troubleshooting

virtualization, 592–594

news facility, 548

nfs filesystems, 198

NFS (Network File System), 472–473

nftables firewall, 513

nice utility, 262–263

NICs (network interface controllers)

disabling, 451

nomenclature, 449

working with, 454–455

nl command, 419–421

nmap command, 502–503

nmcli command

network connections, 452–453

virtualization, 593

nmtui command, 452–453

noarch architecture for RPM packages, 292

node addresses in subnet masks, 446

nohup command, 269, 528–529

none priority in logs, 548

normal mode in vi

description, 56

working in, 57–59

NOT operators in scripts, 410

notice priority in logs, 548

NSA (National Security Agency), 557

nslookup command, 468

ntfs filesystems, 198

NTP (Network Time Protocol), 469–471

ntpd daemon, 470

ntpq command, 470

ntptrace utility, 470

numbering text file lines, 419–421

numerical permissions, 167

O

objects in SELinux, 557

octal notation, converting binary files to, 421–422

octets in IP addresses, 444

od command, 421–422

OnBootSec setting in .timer file, 281

OnCalendar stanza in .timer file, 281–282

one-time passwords (OTPs), 499

one-way encryption, 484–485

OOM Killer (Out Of Memory Killer), 612

Open Document Format, 128

open file descriptors, limiting, 538

open files, checking for, 228

open ports, 503

OpenAPI Initiative, 574

opening vi files, 54–55

OpenPGP standard, 514

openssl command, 483

OpenSUSE distribution

derivatives, 13

overview, 637

operating systems

security, 528–529

software, 6

operators

arithmetic, 410

Boolean, 410–411

expression, 408–411

file test, 411

relationship, 409–410

string, 409

/opt directory, 122

optical discs for Linux installation, 643

optical drive configuration, 386

OPTIONS assignment key, 373

OR operators in scripts, 410

Oracle Linux, 637

Oracle Unbreakable Linux, 13

Orca screen reader, 655

orchestration

concepts, 573–575

processes, 575–577

OSI Reference Model, 440–442

Ossanna, Joe, 3

other entity permissions, 164

OTPs (one-time passwords), 499

Out Of Memory Killer (OOM Killer), 612

OUTPUT chains in iptables, 509

output redirection, 88–89

OVA virtualization file format, 592

overlay networks in virtualization, 593

OVF virtualization file format, 592

OWNER assignment key, 373

ownership

command line management, 161–162

overview, 159

questions, 178–180

review, 176–178

viewing, 160

P

PaaS (Platform as a Service), 16

package groups, 290

package managers

app store, 310–312

description, 289–290

DNF, 303–304

dpkg, 306–310

questions, 324–330

review, 321–324

RPM, 291–298

troubleshooting, 309–310

yum, 298–303

ZYpp, 304–306

packages

defined, 290

names, 291–292

packet-filtering firewalls

implementing, 506–509

operation, 505–506

page BLOBs, 594

pam_faillock.so module, 538

pam_limits module, 539–540

pam_selinux.so module, 537

pam_tally2.so module, 537–538

PAMs (Pluggable Authentication Modules), 536–537

parameters

IPv4 addresses, 449–454

routing, 455–457

scripts, 407

parent process IDs (PPIDs), 252–254

parent processes, 72–73, 252–253

parity in RAID, 236–237

parted command

overview, 192–193

partitions, 187–188

partition numbers for devices, 185

partitions

considerations, 188–189

copying, 234–235

creating, 188–192

deleting, 192

filesystems, 640–641

GPT, 183–184, 664–665

LVM, 225

managing, 194–195, 213–216

Master Boot Record, 182–183

partition table changes, 192

questions, 217–221

review, 216–217

selecting, 192–193

swap, 189, 199–200, 669

types, 195

unmounting, 206

viewing, 185–188

partprobe command, 192

passwd command

logins, 106

strong passwords, 534

user accounts, 108–109

passwords

groups, 113–114

GRUB settings, 338–340

security threats, 535–536

setting, 108–109

single sign-on, 499

strong, 534–536

user accounts, 102–103

PATH variable, 83, 144

paths for shared libraries, 320–321

pattern spaces in sed command, 423

periods (.) in grep utility, 148

Peripheral Component Interconnect (PCI) system, 359–360

permissions, 557–559

command line management, 165–169

default, 169–171

links, 132

overview, 163–165

questions, 178–180

review, 176–178

special, 171–174

troubleshooting, 167–168

viewing, 160

permissive licensing, 3

Permissive mode in SELinux, 559–560

Persistent setting in .timer file, 281

persistent storage, 600–601

persistent volumes in virtualization, 596

pgrep command, 261–262

philosophical differences in distributions, 12

phishing e-mails, 506, 536

physical environment security, 527–528

Physical layer in OSI Reference Model, 441

physical volumes, 225

PICs (programmable interrupt controllers), 375–377

pidof command, 261–262

PIDs (process IDs)

assigning, 72–73

overview, 252–254

viewing, 251

ping utility, 443

name resolver issues, 460

network troubleshooting, 462–464

pipes, 90–91

pkexec command, 534

PKI (Public Key Infrastructure), 483

pkill command, 268, 541

Platform as a Service (PaaS), 16

Pluggable Authentication Modules (PAMs), 536–537

plumbing commands in Git, 578

plus signs (+)

addition, 410

grep utility, 148

permissions, 166

podman command for containers, 598–600

Podman platform, 596

pods, 595–596

Poettering, Lennart, 343

porcelain commands in Git, 577–578

port command for containers, 597

port forwarding SSH, 496–497

ports

disabling, 529

I/O, 377–379

IP, 443–444

open, 503

USB devices, 387

positional parameters in scripts, 407

POST (power-on self-test), 332–335

PostgreSQL database, configuring, 663–664

pound signs (#) for shebang lines, 404

power directory, 365

power-on self-test (POST), 332–335

ppc architecture in RPM packages, 292

PPIDs (parent process IDs), 252–254

pre-assessment test

answer key, 37

in-depth answer explanations, 38–51

overview, 17

questions, 18–36

results analysis, 51–52

Preboot Execution Environment (PXE), 334

precedence of commands, 143–144

predictable network interface names, 449

Presentation layer in OSI Reference Model, 441

primary partitions, 191–192

print jobs

accepting and rejecting, 392–393

cancelling, 393–394

moving, 394

printers

adding, 389–391

CUPs configuration, 658–661

exercise, 395–396

managing, 392–393

overview, 388–389

printing file extracts, 419

printing to, 391–392

removing, 394–395

sed command, 422–426

troubleshooting, 619–620

priorities in rsyslogd, 548

prioritizing processes, 262–264

private IP addresses, 445–446

private keys

asymmetric encryption, 483

SSH, 486

private ports in IP, 444

/proc/cpuinfo file, 610

/proc directory, 122

/proc/interrupts file, 376

/proc/ioports file, 377

/proc/mdstat file, 238–239

/proc/meminfo file, 611

/proc/swaps file, 613

process IDs (PIDs)

assigning, 72–73

overview, 252–254

viewing, 251

processes

background, 265–266

containers, 595

ending, 266–268

foreground, 265–266

limiting, 540

loading, 252–254

managing, 5

overview, 249–250

prioritizing, 262–264

questions, 284–288

review, 282–284

running after logout, 268–269

scheduling, 271–282

timers, 278–282

user vs. system, 250–252

viewing, 256–262

working with, 269–271

profiles in AppArmor, 562

program assignment key, 373

programmable interrupt controllers (PICs), 375–377

protocols for IP networks, 440–444

ps command

viewing, 250–251

working with, 257–261

PS1 variable, 84

pseudo terminals, 617–618

public IP addresses, 445

public key authentication

configuring, 493–494

SSH, 491–492

Public Key Infrastructure (PKI), 483

public keys

asymmetric encryption, 483

SSH, 487

pubring.gpg file, 516

pull command for containers, 597

Puppet program, 577

push command for containers, 597

pvcreate command, 225

pvscan command, 225–226

pwd command, 8, 123

PXE (Preboot Execution Environment), 334

Q

QCOW file format, 592

querying RPM database, 296

question marks (?)

grep utility, 148

wildcard characters, 403

QUEUE policy for iptables chains, 510

queues, printer, 392–393

quitting vi, 59

quota command, 213

quotacheck command, 212

quotas

assigning, 212

filesystems, 211–213

reporting on, 213

setting, 213

R

RADIUS (Remote Authentication Dial-In User Service), 500

RAID. See Redundant Array of Independent Disks (RAID)

RAM disk, 340–341

RandomizedDelaySec setting in .timer file, 281

RDMA (Remote Direct Memory Access), 622

read command, 407

Read permission, 163–165

readlink command, 132

real groupid (RGID), 172

real time clock (RTC), 79, 81–82

real-time operating systems (RTOS), 591

real user IDs (RUIDs), 172–173

reboot command, 343

Red Hat Linux, 12

derivatives, 13

description, 637

Red Hat Package Manager (RPM)

command options, 292

cpio archives, 296–297

exercise, 297–298

installing packages, 292–293

overview, 290–291

package names, 291–292

querying databases, 296

removing packages, 294

upgrading packages, 293

verifying packages, 294–296

yum, 298–303

redirection

exercise, 91–93

file descriptors, 87

pipes, 90–91

stderr, 89–90

stdin, 88

stdout, 88–90

redundancy

RAID. See Redundant Array of Independent Disks (RAID)

virtualization networks, 593

Redundant Array of Independent Disks (RAID)

configuring, 243–244

exercise, 239–244

overview, 235–238

software, 238

troubleshooting, 239

verifying status, 238–239

reference monitors in SELinux, 557

registered ports in IP, 443

regular expressions in sed command, 424

reiserfs filesystems, 198

REJECT policy for iptables chains, 510

relationship operators in scripts, 409–410

relative file paths, 124

relative references with at daemon, 273

release numbers

defined, 290

RPM packages, 291

reliability in RAID, 235–238

remote access for Display Manager, 654

Remote Authentication Dial-In User Service (RADIUS), 500

Remote Direct Memory Access (RDMA), 622

remote Linux installation, 643–646

removable media, mounting, 204

remove key

udev assignments, 373

udev rule match, 372

removing. See deleting and removing

renaming partitions, 193

renice command, 262–264

repeatable jobs, scheduling, 274

repeating vi commands, 59

replacing in vi

characters and words, 58

text, 60

repositories

defined, 290

yum, 299–301

ZYpp packages, 305–306

repquota command, 213

reserved IP addresses, 445

resize2fs command, 229

resizing

filesystems, 229

partitions, 193

resolvectl command, 469

resources, limiting, 538–540

restart command for containers, 597

Restart settings in .service file, 279–280

revision control systems, 577–584

RGID (real groupid), 172

Ritchie, Dennis, 3

rm command

containers, 597

files, 135–136

links, 132

swap files, 614

volumes, 226

rmi command for containers, 597

root accounts

overview, 100

passwords, 338–340

pkexec command, 534

proper use, 530–531

su command, 531

sudo command, 531–532

/root/anaconda-ks-cfg file, 602

/root directory

backing up, 231

description, 122

root hubs for USB devices, 358

/root/ks.cfg file, 602

/root/xorg.conf.new file, 652

rotating log files, 548–550

route command, 456

routers in Wi-Fi, 384

routing parameters, 455–457

RPM. See Red Hat Package Manager (RPM)

rpm2cpio command, 296–297

rpmpkgs log files, 554

rsync utility, 230

rsyslogd daemon, 547–548

RTC (real time clock), 79, 82

RTOS (real-time operating systems), 591

RUIDs (real user IDs), 172

rules in udev

creating, 370–371

location, 368–370

RUN assignment key, 373

run command for containers, 597

/run directory, 122

/run/log/journal/ directory, 550, 552

Runas_Alias, 531

RUNCOM application, 2

runlevel command, 342

runlevels

overview, 341–342

processes, 255

services, 348

RUNOFF application, 2

S

SaaS (Software as a Service), 16

Samba filesystem, 472–473

sar command, 611

SATA (Serial AT Attachment) drives

description, 386

tape drives for backups, 233

save command for containers, 597

saving vi files, 59–60

/sbin directory, 122

/sbin/init command, 341

scanning for network devices, 383

scheduling processes, 271–282

SCI (System Call Interface), 5

scp command, 485, 491–492

screen readers, 655

Screen section in X Window System, 651–652

scripts

command sequencing, 403–404

command substitution, 404

comments, 405

components, 404–408

concepts, 401–402

conditionals, 411–414

creating, 416–417

expressions, 408–411

functions, 408

login order, 83–84

looping structures, 414–416

positional parameters, 407

processes, 250, 254

questions, 433–437

review, 432–433

shebang lines, 404

text streams. See text stream commands

user input, 406–407

variables, 405–406

wildcard characters, 402–403

SCSI (Small Computer System Interface)

configuration, 385–386

tape drives, 233

sealert command, 561

search mode in vi, 57

searching

sed command, 423–425

vi text, 60

Secret access, 556

secret key encryption, 483

secring.gpg file, 516

sector size in GPT partitions, 184

secure log files, 546, 554

Secure Shell (SSH)

authorized_keys, 494

configuration, 486–488

logging into without passwords, 490–492

operation, 485–486

port forwarding, 496–497

public key authentication, 493–494

verifying, 627–628

working with, 488–490

security

group and file, 556–562

network. See network security

operating system, 528–529

physical environment, 527–528

questions, 567–571

review, 565–567

system logs. See system logs

user access. See user access

sed command, 280, 422–426

SELECT database command, 663

self-signed certificates, 483

SELinux module, 557

audits, 561–562

Booleans, 560–561

contexts, 557–559, 563–564

enabling, 559–560

selinux-policy-minimum, 558

selinux-policy-mls package, 560

semanage command, 559, 561

semicolons (;) in command sequencing, 403

seq command, 415–416

sequencing commands, 403–404

Serial AT Attachment (SATA) drives

description, 386

tape drives for backups, 233

ServerLayout section in X Window System, 652

servers

desktop system, 15

NTP pool time, 470

X Window System, 650–652

service file for timers, 279–280

service level agreements (SLAs), 575

service meshes for clusters, 601

[Service] stanza

service file, 279

vsftpd.service file, 344–345

services

controlling, 347–348

disabling, 502–504

troubleshooting, 348–349

Session layer in OSI Reference Model, 441

sestatus command, 560

set command for variables, 72–73

set group ID (SGID) permissions, 172, 542–543

setenforce command, 559

setfacl command, 176

setsebool command, 561

sftp command, 485

SGID (set group ID) permissions, 171–172, 542–543

SHA hashing, 484–485

sha1sum command, 485

sha256sum command, 485

shared libraries

exercise, 321

managing, 319–321

operation, 318–319

shebang (#!) lines, 404

shell

aliases, 75–76

bash configuration files, 82–84

configuring, 72–76

description, 71–72

exercise, 84–87

local environment, 76–79

process commands, 250

processes, 72–73

questions, 94–98

redirection, 87–93

review, 93

scripts. See scripts

time setting, 79–82

variables, 73–75

SHELL variable, 84

shortcuts, shell, 75–76

show sockets (ss) command, 464

shutdown command, 343

shutting down system, 342–343

sidecars, 595

Sievers, Kay, 343

SIGHUP signal, 266, 268

SIGINT signal, 267

SIGKILL signal, 267

signals, kill, 266–267

SIGTERM signal, 267–268

single sign-on (SSO), 499–501

Kerberos, 500–501

LDAP, 500

RADIUS, 500

TACACS+, 501

size

filesystems, 229

partitions, 189, 191–194

volumes, 227

SLAs (service level agreements), 575

slashes (/)

absolute file paths, 123

division, 410

IPv4 addresses, 447

text searches, 60

sleep command, 265–266

SLES (SUSE Linux Enterprise Server) distribution, 637

slogin command, 485

SlowKeys feature, 654

Small Computer System Interface (SCSI)

configuration, 385–386

tape drives, 233

smart TVs, 17

smartphones and tablets, 17

smb filesystems, 198

SMB protocol, 472–473

smbclient command, 473

Snap package manager, 310–311

snapshots

LVM, 227–228

processes, 257–258

social engineering attacks, 530, 535–536

sockets, viewing, 503

soft limits for quotas, 212

soft links, 131–133

software

application, 7–11

DNF package manager, 303–304

dpkg package manager, 306–310

executables compilation, 315–316

executables installation, 316

installation files, 313–315

installing from source code, 313–317

operating system, 5

package managers, 289–290

package selection, 641–642

questions, 324–330

review, 321–324

RPM, 291–298

shared libraries, 318–321

troubleshooting, 309–310

uninstalling, 317–318

yum, 298–303

ZYpp package manager, 304–306

Software as a Service (SaaS), 16

software RAID, 238

Software und System-Entwicklung (SUSE) distribution, 13

solid state drives (SSDs), 386–387

sorting text files, 429–430

source code, 290, 313–317

source command

configuration files, 84

scripts, 402

sources for links, 130

Spanning Tree Protocol (STP), 498

special permissions, 171–174

speed of USB devices, 387

Spinnaker program, 575

split command, 430

Sputnik launch, 2

SQL (Structured Query Language) database configuration, 663–664

square brackets ([])

egrep utility, 149

grep utility, 148–149

wildcard characters, 403

/srv directory, 122

ss (show sockets) command, 464

SSDs (solid state drives), 386–387

SSH. See Secure Shell (SSH)

ssh command, 485

ssh-copy-id command, 494

ssh-keygen command, 485, 491

sshd command, 485, 595

sshd_config file, 486

SSO. See single sign-on (SSO)

Stallman, Richard, 4

stanzas for repositories, 300

start command for containers, 597

stat command, 128–129

stateful firewalls, 505–506

stateless firewalls, 505

static IP addresses, 449–450, 460

static shared libraries, 319

status of units, 346–347

stderr device, 89–90

stdin device, 88

stdout device, 88–90

sticky bit permissions, 171–172

StickyKeys feature, 654

stop command for containers, 597

storage

block device encryption, 195–196

containers, 600–601

device locating, 666–668

device naming conventions, 184–185

filesystems. See filesystems

GUID partition table components, 664–665

overview, 181–182

partitions. See partitions

storage device configuration

hdparm utility, 387–388

IDE, 385

lsscsi command, 388

optical drives, 386

SATA, 386

SCSI, 385–386

SSDs, 386–387

USB, 387–388

storage performance, 614–617

STP (Spanning Tree Protocol), 498

stratum on NTP, 469–470

stream editors, 280

strings in scripts

operators, 409

variables, 405

strong passwords, 534–536

structure, Linux, 4–5

Structured Query Language (SQL) database configuration, 663–664

su command

IDs, 104–105

root accounts, 531

subjects in SELinux, 557

subnet masks, 446–448

subshells, 254

substitution strings in udev rules, 371

SUBSYSTEM key for udev rules, 372

subtraction in scripts, 410

sudo command

permissions, 167

using, 531–532

suffixes, 274

SUID permissions, 171–172, 542–543

superblocks

filesystems, 199

restoring, 670

supercomputer servers, 15

SUSE Linux Enterprise Server (SLES) distribution, 637

SUSE (Software und System-Entwicklung) distribution, 13

swap partitions, 189, 640, 669

swap space

filesystems, 199–200

increasing, 612–614

swapoff command, 202, 614

swapon command, 202, 613–614

switches, virtual, 594

switching background and foreground processes, 265–266

symbolic links

description, 131

overview, 131–133

permissions, 164

SYMLINK assignment key, 373

symmetric encryption, 482–483, 485–486

synchronizing networks, 469–471

syntax checker in scripts, 60–61

/sys/block/sda/queue/scheduler file, 210

/sys directory, 122, 364–365

/sys/fs/selinux directory, 561

sys mount points, 666

SYS_UID_MAX variable, 100

SYS_UID_MIN variable, 100

sysadm_exec_content boolean, 561

sysctl command, 625–626

sysfs filesystem, 364–365

system accounts, 100–101

System Call Interface (SCI), 5

system-config-kickstart configurator, 602

system logs

configuring, 545–552

intruder detection, 555–556

troubleshooting with, 552–554

system processes vs. user, 250–252

system requirements for Linux installation, 638–639

system time commands, 82

system-upgrade command, 303

System V initialization

/etc/inittab file, 341–342

runlevels, 341–342

shutting down system, 342–343

systemctl command

Bluetooth, 382

with cron, 274

firewalls, 507

networks, 451

printers, 620

services, 346–348

SSH, 486, 627

targets, 348

units, 344–347

unused services, 502–503

systemd process

mount units, 205

overview, 252–254

timers, 278–282

units, 344–347

systemd.service file, 279–280

systemd.timer file, 280–282

systool command, 366–367

SysVinit process, 253

T

TACACS+ (Terminal Access Controller Access Control System Plus), 501

tail command

description, 430

file contents, 135

log files, 553

Tanenbaum, Andrew, 3

tar utility

backups, 232–233

installation files, 314–315

tarball files, 232, 314–315

targets for services, 348

TCP/IP protocol, 440

TCP (Transmission Control Protocol), 440, 442

tcpdump tool, 482

technical differences in distributions, 11–12

tee command, 91

telinit command, 342

Terminal Access Controller Access Control System Plus (TACACS+), 501

Terraform program, 577

test command in scripts, 411–412

text editors

nano, 62–64

sed, 422–426

vi. See vi text editor

text stream commands, 417

awk, 427–429

cut, 419

exercise, 431–432

head, 430

nl, 419–421

od, 421–422

sed, 422–426

sort, 429–430

split, 430

tail, 430

tr, 418–419

uniq, 430–431

wc, 431

TFTP (Trivial File Transfer Protocol) servers, 334

thick provisioning in virtualization, 591

thin provisioning in virtualization, 591

Thompson, Ken, 3

thumb drives

Linux installation, 643

USB devices, 387

tickets in Kerberos, 501

tilde character (~), 83

time command, 611

time on networks, synchronizing, 469–471

time setting, 79

date command, 79–80

files, 80

hwclock command, 81

process scheduling, 272–273

time zones, 80

timedatectl command, 81–82

time-sharing system in CTSS, 2

time zone settings, 80, 657

timedatectl command, 81–82

timeout setting in GRUB, 336

.timer file, 280–282

timers for processes, 278–282

timestamps, 128–129

/tmp directory, 122

top command

containers, 597

processes, 256–257

Top Secret access, 556

Torvalds, Linus, 4

touch command, 128–129

tr command, 418–419

traceroute utility, 443, 460, 465–466

training for social engineering attacks, 530, 535–536

translating characters, 418–419

Transmission Control Protocol (TCP), 440, 442

Transport layer in OSI Reference Model, 441

trees for devices, 667–669

Trivial File Transfer Protocol (TFTP) servers, 334

troubleshooting

CPU performance, 610–611

devices, 617–620

filesystems, 207

firewalls, 627–628

hardware configuration, 608–609

input/output devices, 210–211

IP addresses, 624–625

journaled filesystems, 202–203

memory performance, 611–612

mounts, 206

name resolver issues, 460

networks. See network troubleshooting

permissions, 167–168

processes, 264

questions, 630–633

RAID, 239

review, 629–630

services, 348–349

standardized model, 607–608

storage performance, 614–617

subnet network configuration, 448–449

system logs for, 552–554

trustdb.gpg file, 516

trusted clients in SSH, 490

tshark tool, 482

tune2fs utility, 199

tunnel networks, 485

SSH configuration, 486–488

SSH operation, 485–486

VPNs, 494–496

tutorial for vi, 53

Type 1 hypervisors, 590

Type 2 hypervisors, 591

type command, 76, 145

typeset command, 144

TZ variable, 657

U

Ubuntu derivative, 14

Ubuntu Desktop Edition, 15

udev

assignment keys, 372–374

device rules, 204, 667–669

overview, 368

rules creation, 370–371

rules location, 368–369

udevadm utility, 369–370, 374

udevadm utility, 369–370, 374

UDP (User Datagram Protocol), 440, 442

UEFI (Unified Extensible Firmware Interface), 335

UEK (Unbreakable Enterprise Kernel), 13

uevents for devices, 667

ufw command, 513

UFW (uncomplicated firewall), 513

UIDs (user IDs), 100–102, 104–105

ulimit command, 538–539

Ultra SCSI, 385

umask command for permissions, 170–171

umount command

partitions, 206

snapshots, 228

unalias command, 76, 143

Unbreakable Enterprise Kernel (UEK), 13

Unclassified access, 556

uncomplicated firewall (UFW), 513

unconfined processes, 563

Unicode encoding, 78–79, 656

UNICS (Uniplexed Information and Computing), 3

Unified Extensible Firmware Interface (UEFI), 334–335

uninstalling software, 317–318

Uniplexed Information and Computing (UNICS), 3

uniq command, 430–431

[Unit] stanza

.service file, 279

vsftpd.service file, 345

units, 344–347

universal unique identifiers (UUIDs), 183, 668–669

UNIX operating system, 3

unlink command, 132, 226

unmounting partitions, 206

unnamed pipes, 90–91

unset command for variables, 74

until loops in scripts, 415

unused services, disabling, 502–504

UPDATE database command, 663

updatedb command, 142

updating

security, 504

yum packages, 302

ZYpp packages, 304–305

upgrading

dpkg packages, 307–308

package managers, 309–310

RPM packages, 293

uptime command, 611

USB devices

detecting, 358–359

settings, 387–388

USB ports, disabling, 529

user access

audits, 542–543

forcing off, 670

limits, 538–540

locking accounts, 536–538

login disabling, 540–542

managing, 544–545

passwords, 534–536

root accounts, 530–534

user accounts

command line management, 106–115

groups, 113–115

IDs, 104–105

Linux installation, 642–643

locking, 536–538

overview, 99–104

permissions, 163–164, 167–168

questions, 116–120

quotas, 213

review, 115–116

User_Alias alias, 531–532

User Datagram Protocol (UDP), 440, 442

user facility, 548

user IDs (UIDs), 100–102, 104–105

user input in scripts, 406–407

user processes vs. system, 250–252

user space

description, 5

setting up, 364–374

useradd command

system accounts, 100

user accounts, 106–108

userdel command, 110

usermod command

logins, 102

user accounts, 110

usernames, 101–102

/usr directory, 122

/usr/lib/systemd/system file, 344

/usr/libexec/git-core/ directory, 578

/usr/share/hwdata/pci.ids file, 360

/usr/share/lightdm/lightdm.conf.d file, 653

/usr/share/misc/magic file, 134

/usr/share/misc/magic.mgc file, 134

/usr/share/zoneinfo directory, 80, 657

uucp facility, 548

UUIDs (universal unique identifiers), 183, 668–670

V

Vagrant program, 575

/var directory

backing up, 231

contents, 122

/var/lib/dhclient/dhclient.leases file, 624

/var/lib/mlocate/mlocate.db file, 142

/var/lib/rpm file, 292

/var/log/apache2 directory, 554

/var/log/audit/audit.log file, 561

/var/log/boot.log file, 331

/var/log/btmp file, 555

/var/log/cron file, 548

/var/log directory, 545–546

/var/log/faillog file, 555

/var/log/journal file, 556

/var/log/lastlog file, 556

/var/log/messages file, 548, 552–553

/var/log/mysql directory, 554

/var/log/secure file, 548

/var/log/wtmp file, 555

/var/spool/anacron directory, 277

/var/spool/cron/ directory, 275

/var/spool/cron/crontabs/ directory, 275

/var/spool/cron/tabs/ directory, 275

/var/spool/mail/ file, 661

variables

awk command, 426

scripts, 405–406

shell, 73–75

VDI virtualization file format, 592

verifying

RAID status, 238–239

RPM packages, 294–296

version numbers

Debian packages, 307

defined, 290

RPM packages, 291

vertical bars (|)

command sequencing, 403

egrep utility, 149

pipes, 91

vgcreate command, 226

VHD virtualization file format, 592

vi text editor

command-line mode, 59–61

exercise, 61–62

modes overview, 55–56

opening files, 54–55

questions, 65–69

review, 64–65

role and function, 53–54

syntax checker, 60–61

video game systems, 17

vim text editor, 53

vimtutor command, 53

virsh utility, 591–592

virtual consoles, 617–618

virtual file system, 5

virtual machines, 16

Virtual Network Computing (VNC), 644–646

virtual private networks (VPNs), 494–496

virtual switches, 594

virtual tape libraries (VTLs), 229

Virtualbox Question dialog box, 241

VirtualBox virtualization platform, 16

virtualization

Anaconda and kickstart, 602

containers. See containers, virtualization

file formats, 591–592

hypervisors, 590–591

implementations, 16

networking, 592–594

overview, 589–590

questions, 603–606

review, 602–603

thick and thin provisioning, 591

virsh utility, 591–592

visudo utility, 532–533

VMDK virtualization file format, 592

vmstat command, 611–612

VMware Workstation virtualization platform, 16

VNC (Virtual Network Computing), 644–646

vncviewer utility, 645

volume management, 223

archives, 229–231

components, 224

configuration, 225–227

creating, 226–227

extending, 228–229

groups, 226

logical volume management, 223–228

overview, 223–224

questions, 245–248

RAID, 235–244

review, 244–245

snapshots, 227–228

volumes in virtualization, 596

VPNs (virtual private networks), 494–496

vsftpd.service unit file, 344–346

W

w command

logged in users, 540–541

running commands, 611

Warn_Days field in user accounts, 103

warn priority in logs, 548

wc command, 431

web and database servers, 15

web interface for printers, 391

well-known ports, 443

wget command, 313–314

whatis command, 10–11

wheel group, 167

Wheeler, David, 4

whereis command, 145

which command, 145

while loops in scripts, 414–416

who command, 8–9, 104

whoami command, 8–9

Wi-Fi configuration, 383–384

Wide SCSI, 385

Wide Ultra SCSI, 385

wildcard certificates, 483

wildcard characters, 402–403

words in vi

changing, 58

deleting and replacing, 58

world entity permissions, 164

World Wide Identifiers (WWIDs), 668

Write permission, 163–165

wtmp log file, 546

WWIDs (World Wide Identifiers), 668

X

X Window System

utilities, 652–653

X servers, 650–652

x86_64 architecture in RPM packages, 292

xargs utility, 141–142

xdpyinfo command, 652

Xen virtualization platform, 16

xfs_admin tool, 209–210

XFS (Extents File System) filesystem, 198–200

xfs filesystems, 198–200

xfs_info tool, 210

xguest_exec_content boolean, 561

xhost command, 654

Xorg command, 652

Xubuntu derivative, 14

xwininfo command, 652

xz utility, 231–232

Y

YAML (Yet Another Markup Language)

containers, 597

orchestration processes, 575

Young, Bob, 12

yum (Yellow Dog Updater Modified) package manager

commands, 301–302

configuring, 298–299

description, 298

exercise, 303

package operations, 302

repositories, 299–301

Z

zip utility, 231–232

zombie processes, 257

zones in firewalls, 507

ZYpp package manager, 304–306

zypper command, 304–306

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	Introduction
	Chapter 1 An Introduction to Linux and a Pre-Assessment Exam
	A Brief History of Linux
	Batch Processing
	MULTICS
	UNIX
	Linux

	Linux Operating System Structure
	Kernel
	Operating System Software
	Application Software

	Linux Distributions
	Distribution Differences
	Linux Derivatives

	Common Linux Implementations
	Linux on the Desktop
	Linux on the Server
	Mobile Linux
	Linux and Virtualization
	Linux and Cloud Computing
	Embedded Linux

	Chapter Review
	Pre-Assessment Test
	Questions
	Quick Answer Key
	In-Depth Answer Explanations
	Analyzing Your Results

	Chapter 2 Using the vi Text Editor
	The Role and Function of the vi Text Editor
	Editing Text Files in vi
	Opening Files in vi
	The vi Modes
	Working in Normal Mode
	Working in Command-Line Mode
	Exercise 2-1: Using the vi Editor

	Editing Text Files in nano
	Command Keys
	Configuration Files

	Chapter Review
	Questions
	Answers

	Chapter 3 Working with the Linux Shell
	What Is a Shell?
	Configuring the Shell
	The Life of a Process
	Managing Variables
	Configuring Aliases

	Setting Up the Local Environment
	Locale Settings
	Character Encoding
	An ASCII Primer
	A Unicode Primer

	Setting Time
	The date Command
	The /usr/share/zoneinfo/ and /etc/localtime Files
	The hwclock Command
	The timedatectl Command

	Bash Configuration Files
	Login Script Order
	The source Command
	Exercise 3-1: Working with Variables, Parameters, and Aliases

	Redirection
	File Descriptors
	Redirect stdin with <
	Redirect stdout with > and >>
	Redirect stderr with 2>
	Combining stdout and stderr
	Send Data to a Command Using a Pipe
	Exercise 3-2: Redirection Hands-on Project

	Chapter Review
	Questions
	Answers

	Chapter 4 Managing Linux Users and Groups
	Understanding Linux Users and Groups
	Linux User Accounts
	Displaying User and Group IDs

	Creating and Managing User Accounts from the Command Line
	Provisioning New Users with useradd
	Exercise 4-1: Managing User Accounts from the Command Line
	Provisioning New Workgroups with groupadd
	Exercise 4-2: Managing Groups from the Command Line

	Chapter Review
	Questions
	Answers

	Chapter 5 Managing Linux Files and Directories
	Understanding the Filesystem Hierarchy Standard
	Navigating the Linux Filesystem
	Viewing Directory Contents with ls
	Exercise 5-1: Navigating the Filesystem

	Managing Linux Files
	Files, Filenames, and Inodes
	Creating and Validating Files with touch and stat
	Soft and Hard Links
	Creating New Directories with mkdir
	Determining the File Type
	Viewing File Contents
	Deleting Files
	Copying and Moving Files
	Exercise 5-2: Managing Files and Directories

	Finding Files in the Linux Filesystem
	Using find to Search for Files
	Using xargs to Run Commands from Standard Input
	Using locate to Find Files

	Understanding Commands and Precedence
	Creating Aliases
	Creating and Using Functions
	Using Builtin Commands
	Using External Commands
	Exercise 5-3: Finding Files

	Finding Content Within Files
	Using grep to Search Within Files
	Using egrep to Search Within Files
	Exercise 5-4: Using grep

	Chapter Review
	Questions
	Answers

	Chapter 6 Managing Ownership and Permissions
	Managing File Ownership
	Viewing Default File Permissions and Ownership
	Managing Ownership from the Command Line
	Exercise 6-1: Managing Ownership

	Managing File and Directory Permissions
	How Permissions Work
	Managing Permissions from the Command Line
	Exercise 6-2: Managing Permissions
	Working with Default Permissions
	Working with Special Permissions
	Exercise 6-3: Managing Default and Special Permissions

	Configuring File Attributes and Access Control Lists
	File Attributes
	File Access Control Lists

	Chapter Review
	Questions
	Answers

	Chapter 7 Managing Storage
	An Overview of Storage
	The Master Boot Record
	The GUID Partition Table
	The Device Naming Conventions
	Viewing Disk Partitions

	Creating Partitions
	Partition Considerations
	fdisk Partitioning Utility
	parted Partitioning Utility
	gdisk Partitioning Utility
	Block Device Encryption

	Creating Filesystems
	Available Filesystems
	Building a Filesystem
	Mounting a Filesystem
	Mounting Filesystems Automatically at Boot
	Unmounting a Partition with umount

	Managing Linux Filesystems
	Using df to Verify Free Disk Space
	Using du to Verify Directory Usage
	Reporting Filesystem Status Using dumpe2fs
	Verifying XFS Filesystems Using xfs_admin
	Checking the Filesystem Integrity

	Managing Quotas
	Editing /etc/fstab to Set Up Quotas
	Creating Quota Database Files
	Assigning a Quota to Users and Groups
	Exercise 7-1: Managing Linux Partitions

	Chapter Review
	Questions
	Answers

	Chapter 8 Configuring Volume Management
	Implementing Logical Volume Management
	LVM Components
	LVM Configuration
	LVM Snapshots
	Extending LVMs

	Creating Archives and Performing Compression
	Selecting a Backup Medium
	Selecting a Backup Strategy
	Linux Backup and Compression Utilities
	Exercise 8-1: Backing Up Data

	Enabling Redundant Array of Independent Disks
	Configuring Software RAID
	Verifying RAID Status
	Exercise 8-2: Configuring RAID and Logical Volumes

	Chapter Review
	Questions
	Answers

	Chapter 9 Managing Linux Processes
	Understanding Linux Processes
	Types of Linux Programs
	User Processes Versus System Processes
	How Linux Processes Are Loaded

	Managing Processes
	Starting System Processes
	Viewing Running Processes
	Prioritizing Processes
	Managing Foreground and Background Processes
	Ending a Running Process
	Keeping a Process Running After Logout
	Exercise 9-1: Working with Linux Processes

	Scheduling Jobs
	Using the at Daemon
	Using the cron Daemon
	Exercise 9-2: Scheduling Linux Processes
	Using systemd timers

	Chapter Review
	Questions
	Answers

	Chapter 10 Managing Linux Applications
	Using a Package Manager to Install Applications
	Installing Applications on Red Hat with RPM
	RPM Package Naming Conventions
	RPM Command Options
	RPM Application Installation
	RPM Application Upgrades
	RPM Application Removal
	RPM Application Verification
	RPM Database Querying
	RPM Conversion to CPIO
	Exercise 10-1: Practicing Package Manipulation with RPM

	Installing RPMs with YUM, DNF, and ZYpp
	The YUM Package Manager
	Exercise 10-2: Practicing Package Manipulation with YUM
	The DNF Package Manager
	The ZYpp Package Manager

	Installing Applications on Debian with dpkg
	Debian Package Naming Conventions
	Managing Applications with dpkg
	Viewing Application Information with apt-cache

	Installing Applications on Debian with APT
	Troubleshooting an Application Crash

	Using Universal Linux App Stores
	Snap Fundamentals
	Flatpak Fundamentals
	AppImage Fundamentals

	Installing Applications from Source Code
	Preparing the Installation Files
	Compiling the Executable
	Installing the Executable
	Exercise 10-3: Building Software from Source Code
	Uninstalling Software Compiled from Source Code

	Managing Shared Libraries
	How Shared Libraries Work
	Managing Shared Library Dependencies
	Exercise 10-4: Working with Shared Libraries

	Chapter Review
	Questions
	Answers

	Chapter 11 Managing the Linux Boot Process
	The BIOS POST Phase
	The Classic BIOS
	The Modern UEFI

	The GRUB2 Bootloader Phase
	Modify the GRUB2 Bootloader
	Change a Forgotten root Password
	Exercise 11-1: Working with GRUB2

	The Kernel Initiation Phase
	System V Initialization
	The Linux Runlevels
	The inittab Startup File
	Shutting Down the System

	The systemd Initialization Phase
	systemd Unit Files
	Service Procedures
	Targets

	Kernel Panic
	Chapter Review
	Questions
	Answers

	Chapter 12 Managing Hardware Under Linux
	Discovering Devices
	Displaying the Kernel Ring Buffer with dmesg
	Detecting USB Devices with lsusb
	Detecting PCI Devices with lspci

	Managing Kernel Modules
	Exercise 12-1: Working with Kernel Modules

	Referencing Kernel and User Space
	/sys and sysfs
	udev

	Configuring Hardware Devices
	lsdev
	lshw
	Exercise 12-2: Discovering Devices

	Configuring Bluetooth
	Classes
	Bluetooth Commands

	Configuring Wi-Fi
	Scanning for Network Devices
	Configuring a Wi-Fi Network

	Configuring Storage Devices
	IDE
	SCSI
	SATA
	Optical Drives
	Solid State Drives
	USB
	hdparm
	lsscsi

	Printing in Linux
	Adding Printers
	Printing to a Printer
	Managing Printers and Print Queues
	Canceling Print Jobs
	lpmove
	Removing a Printer or Printer Class
	Exercise 12-3: Printing

	Chapter Review
	Questions
	Answers

	Chapter 13 Writing Shell Scripts
	Advanced Shell Concepts
	Globbing Wildcard Characters
	Sequencing Commands
	Command Substitution

	Understanding Shell Script Components
	Defining the Interpreter with #!
	Commenting with #
	Defining Variables
	Reading User Input
	Using Positional Parameters
	Using Functions

	Using Control Operators
	Expression Operators
	Testing with Conditionals
	Using Looping Structures
	Exercise 13-1: Creating a Basic Shell Script

	Processing Text Streams
	The tr Command
	The cut Command
	The nl Command
	The od Command
	The sed Command
	The awk Command
	The sort Command
	The split Command
	The head Command
	The tail Command
	The uniq Command
	The wc Command
	Exercise 13-2: Processing Text Streams

	Chapter Review
	Questions
	Answers

	Chapter 14 Managing Linux Network Settings
	Understanding IP Networks
	What Is a Protocol?
	How IPv4 Addresses Work
	How IPv4 Subnet Masks Work

	Configuring Network Addressing Parameters
	Assigning NIC Nomenclature
	Configuring IPv4 Parameters
	Exercise 14-1: Working with Network Interfaces
	Configuring Routing Parameters
	Configuring Name Resolver Settings
	Configuring IPv6

	Troubleshooting Network Problems
	Using a Standardized Troubleshooting Model
	Using ping
	Using netstat
	Using traceroute
	Using nc
	Using Name Resolution Tools
	Synchronizing Time on a Network
	Exercise 14-2: Working with Network Commands

	Understanding Network-Based Filesystems
	Network File System (NFS)
	Samba

	Chapter Review
	Questions
	Answers

	Chapter 15 Understanding Network Security
	Understanding How Encryption Works
	Symmetric Encryption
	Asymmetric Encryption
	Integrity Checking via Hashing

	Implementing Secured Tunnel Networks
	How SSH Works
	Configuring SSH
	Exercise 15-1: Working with SSH
	Logging In to SSH Without a Password
	Exercise 15-2: Configuring Public Key Authentication
	Virtual Private Networks

	Configuring High-Availability Networking
	Network Bridge Control
	Network Bonding

	Understanding Single Sign-On
	RADIUS
	LDAP
	Kerberos
	TACACS+

	Defending Against Network Attacks
	Mitigating Network Vulnerabilities
	Implementing a Firewall with firewalld
	Exercise 15-3: Implementing Network Security Measures with firewalld
	Implementing a Firewall with iptables
	Exercise 15-4: Implementing Network Security Measures with iptables

	Encrypting Files with GPG
	How GPG Works
	Using GPG to Encrypt Files
	Using GPG to Revoke Keys
	Exercise 15-5: Using GPG to Encrypt Files

	Chapter Review
	Questions
	Answers

	Chapter 16 Securing Linux
	Securing the System
	Securing the Physical Environment
	Securing Access to the Operating System

	Controlling User Access
	To Root or Not to Root?
	Implementing a Strong Password Policy
	Locking Accounts After Failed Authentications
	Configuring User Limits
	Disabling User Login
	Security Auditing Using find
	Exercise 16-1: Managing User Access

	Managing System Logs
	Configuring Log Files
	Using Log Files to Troubleshoot Problems
	Using Log Files to Detect Intruders

	Enhancing Group and File Security
	Implementing SELinux
	Implementing AppArmor
	Exercise 16-2: Managing SELinux Contexts

	Chapter Review
	Questions
	Answers

	Chapter 17 Applying DevOps: Automation and Orchestration
	Orchestration Concepts
	Orchestration Processes
	The Git Revision Control System
	Using Git
	Collaborating with Git
	Exercise 17-1: Working with a Git Repository

	Chapter Review
	Questions
	Answers

	Chapter 18 Understanding Virtualization and the Cloud
	Understanding Virtualization
	Hypervisors
	Thin vs. Thick Provisioning
	Virtualization File Formats
	Managing Virtual Machines with virsh
	Virtual Networking
	BLOB Storage
	Virtual Machine Shortcomings

	Understanding Containers
	Persistent Volumes
	Container Markup Languages

	Managing Containers with Docker and Kubernetes
	Getting Started with Docker
	Deploying an Existing Container Image
	Running a Container Image
	Configuring Container Persistent Storage
	Removing Containers
	Cluster Management with Kubernetes

	Automating Installations with Kickstart
	Chapter Review
	Questions
	Answers

	Chapter 19 Troubleshooting and Diagnostics
	A Standardized Troubleshooting Model
	Troubleshooting Computer Problems
	Verify Hardware Configuration
	Verify CPU Performance
	Verify Memory Performance
	Exercise 19-1: Working with Swap Space
	Validate Storage Performance
	Validate Other Devices

	Troubleshooting Network Problems
	Verify Network Performance
	Validate User Connections
	Validate the Firewall
	Exercise 19-2: Troubleshooting Networking Issues

	Chapter Review
	Questions
	Answers

	Chapter 20 Installing and Configuring Linux
	Designing a Linux Installation
	Conducting a Needs Assessment
	Selecting a Distribution
	Checking Hardware Compatibility
	Verifying System Requirements
	Planning the Filesystem
	Selecting Software Packages
	Identifying User Accounts
	Gathering Network Information
	Selecting an Installation Source

	Installing Linux
	Exercise 20-1: Installing a Linux System

	Configuring the X Window System
	Configuring the X Server
	Configuring the Display Manager
	Configuring Accessibility

	Configuring Locale Settings
	Configuring Time Zone Settings
	Configuring Printing with CUPS
	Configuring CUPS

	Configuring E-mail
	Configuring SQL Databases
	Configuring Storage
	GUID Partition Table Components
	IDE Drives
	Locating a Device

	Chapter Review
	Questions
	Answers

	Appendix A Objective Map
	Exam XK0-005

	Appendix B About the Online Content
	System Requirements
	Your Total Seminars Training Hub Account
	Privacy Notice

	Single User License Terms and Conditions
	TotalTester Online
	Other Book Resources
	Performance-Based Questions
	Virtual Machines
	Videos

	Technical Support

	Index

